OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 25 — Sep. 1, 2012
  • pp: 6125–6129

Generation of optical vortices in spun multihelicoidal optical fibers

Constantine N. Alexeyev  »View Author Affiliations

Applied Optics, Vol. 51, Issue 25, pp. 6125-6129 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (320 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have theoretically studied long-period spun l-helicoidal fibers and their ability to generate singular beams from regular ones. On the basis of perturbation theory in the presence of degeneracy, applied to the scalar waveguide equation, we obtained the structure of coupled modes of such fibers and their spectra. It is shown that the coupled modes consist of the fields, which taken separately bear topological charges that differ by l units. We have numerically studied the process of the passage of a Gaussian beam through such a fiber and demonstrated that long-period l-helicoidal fibers have the ability to change—in a certain wavelength range—the topological charge of the incoming Gaussian beam by l units, generating in this way charge-l optical vortex.

© 2012 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2400) Fiber optics and optical communications : Fiber properties
(260.6042) Physical optics : Singular optics

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: June 18, 2012
Revised Manuscript: July 27, 2012
Manuscript Accepted: August 2, 2012
Published: August 28, 2012

Constantine N. Alexeyev, "Generation of optical vortices in spun multihelicoidal optical fibers," Appl. Opt. 51, 6125-6129 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. Augustyniak, A. Popiołek-Masajada, J. Masajada, and S. Drobczyński, “New scanning technique for the optical vortex microscope,” Appl. Opt. 51, C117–C124 (2012). [CrossRef]
  2. E. Mari, F. Tamburini, G. A. Swartzlander, A. Bianchini, C. Barbieri, F. Romanato, and B. Thidé, “Sub-Rayleigh optical vortex coronagraphy,” Opt. Express 20, 2445–2451 (2012). [CrossRef]
  3. N. O. Eckerskorn, N. Zeng, V. G. Shvedov, W. Krolikowski, and A. V. Rode, “Effect of polarization on transport of particles in air by optical vortex beam,” J. Opt. 14, 055302 (2012). [CrossRef]
  4. M. S. Soskin and M. V. Vasnetsov, “Singular optics,” Prog. Opt. 42, 219–276 (2001). [CrossRef]
  5. M. Vasnetsov and K. Staliunas, Optical Vortices, Vol. 228 of Horizons of World Physics (Nova Science, 1999).
  6. T. Su, R. P. Scott, S. S. Djordjevic, N. K. Fontaine, D. J. Geisler, X. Cai, and S. J. B. Yoo, “Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices,” Opt. Express 20, 9396–9402 (2012). [CrossRef]
  7. F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14, 033001 (2012). [CrossRef]
  8. M. W. Beijersbergen, L. Allen, H.E.L.O. van der Ween, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993). [CrossRef]
  9. M. W. Bejersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994). [CrossRef]
  10. V. Yu. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Screw dislocations in light wavefronts,” J. Mod. Opt. 39, 985–990 (1992). [CrossRef]
  11. K. J. Webb, and M.-C. Yang, “Generation and control of optical vortices using left-handed materials,” Phys. Rev. E 74, 016601 (2006). [CrossRef]
  12. I. Skab, Y. Vasylkiv, O. Krupych, V. Savaryn, and R. Vlokh, “Generation of doubly charged vortex beam by concentrated loading of glass disks along their diameter,” Appl. Opt. 51, 1631–1637 (2012). [CrossRef]
  13. L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13, 064001 (2011). [CrossRef]
  14. C. D. Poole, C. D. Townsend, and K. T. Nelson, “Helical-grating two-mode fiber spatial-mode coupler,” J. Lightwave Technol. 9, 598–604 (1991). [CrossRef]
  15. K. S. Lee, and T. Erdogan, “Fiber mode conversion with tilted gratings in an optical fiber,” J. Opt. Soc. Am. A 18, 1176–1185 (2001). [CrossRef]
  16. C. N. Alexeyev, B. P. Lapin, and M. A. Yavorsky, “Helical core optical fibers maintaining propagation of a solitary optical vortex,” Phys. Rev. A 78, 013813 (2008). [CrossRef]
  17. C. N. Alexeyev, B. P. Lapin, and M. A. Yavorsky, “The effect of spin–orbit coupling on the structure of the stopband in helical-core optical fibres,” J. Opt. A 10, 085006 (2008). [CrossRef]
  18. C. N. Alexeyev, T. A. Fadeyeva, B. P. Lapin, and M. A. Yavorsky, “Generation of optical vortices in layered helical waveguides,” Phys. Rev. A 83, 063820 (2011). [CrossRef]
  19. C. N. Alexeyev, T. A. Fadeyeva, B. P. Lapin, and M. A. Yavorsky, “Generation and conversion of optical vortices in long-period twisted elliptical fibers,” Appl. Opt. 51, C193–C197 (2012). [CrossRef]
  20. C. N. Alexeyev, A. V. Volyar, and M. A. Yavorsky, “Multihelix chiral fibre filters of higher-order optical vortices,” J. Opt. A 9, 537–542 (2007). [CrossRef]
  21. A. W. Snyder and J. D. Love, Optical Waveguide Theory(Chapman and Hall, 1985).
  22. D. J. Hall, ed., Selected Papers on Coupled-Mode Theory in Guided-Wave Optics, Vol. MS 84 of SPIE Milestone Series (SPIE, 1993).
  23. A. S. Davydov, Quantum Mechanics (Pergamon, 1976).
  24. A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, 1984).
  25. C. N. Alexeyev, A. V. Volyar, and M. A. Yavorsky, “Narrowband reflective mode converter on the basis of a twisted elliptical core fibre,” J. Opt. A 10, 015301 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited