OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 25 — Sep. 1, 2012
  • pp: 6130–6138

Temperature-insensitive polarimetric vibration sensor based on HiBi microstructured optical fiber

Karima Chah, Nicolas Linze, Christophe Caucheteur, Patrice Mégret, Pierre Tihon, Olivier Verlinden, Sanne Sulejmani, Thomas Geernaert, Francis Berghmans, Hugo Thienpont, and Marc Wuilpart  »View Author Affiliations

Applied Optics, Vol. 51, Issue 25, pp. 6130-6138 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1037 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new type of highly birefringent microstructured optical fiber has been tested for vibration measurements using a polarimetric technique. This technique takes advantage of the stress-induced phase shift between the two orthogonally polarized fiber eigenmodes. Comparison of three different fiber types shows that standard single-mode fibers do not provide stable measurements and that conventional polarization-maintaining fibers lead to a significant cross-sensitivity to temperature. However, for highly birefringent microstructured fibers specifically designed to provide a temperature-independent birefringence, our experiments show repeatable vibration measurements over a frequency range extending from 50 Hz to 1 kHz that are unaffected by temperature variations (up to 120 °C).

© 2012 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.2420) Fiber optics and optical communications : Fibers, polarization-maintaining
(120.7280) Instrumentation, measurement, and metrology : Vibration analysis
(230.0230) Optical devices : Optical devices
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: April 5, 2012
Revised Manuscript: June 28, 2012
Manuscript Accepted: June 30, 2012
Published: August 28, 2012

Karima Chah, Nicolas Linze, Christophe Caucheteur, Patrice Mégret, Pierre Tihon, Olivier Verlinden, Sanne Sulejmani, Thomas Geernaert, Francis Berghmans, Hugo Thienpont, and Marc Wuilpart, "Temperature-insensitive polarimetric vibration sensor based on HiBi microstructured optical fiber," Appl. Opt. 51, 6130-6138 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. J. Stein, “Some recent developments in acceleration sensors,” Meas. Sci. Rev. 1, 183–186 (2001).
  2. Y. R. García, J. M. Corres, and J. Goicoechea, “Vibration detection using optical fiber sensors,” J. Sens. 2010, 936487 (2010). [CrossRef]
  3. H. Wang, S. L. Ogin, A. M. Thorne, and G. T. Reed, “Matrix crack detection by an embedded polarimetric sensor,” J. Mater. Sci. Technol. 22, 220–224 (2006).
  4. H. V. Thakura, S. M. Nalawadea, Y. Saxenaa, and K. T. V. Grattan, “All-fiber embedded PM-PCF vibration sensor for structural health monitoring,” Sens. Actuators A 167, 204–212 (2011). [CrossRef]
  5. P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729–4749 (2006). [CrossRef]
  6. J. C. Knight, “Photonic crystal fibers,” Nature 424, 847–851(2003). [CrossRef]
  7. T. Martynkien, G. Statkiewicz-Barabach, J. Olszewskic, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skrupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18, 15113–15121(2010). [CrossRef]
  8. C. Sonnenfeld, S. Sulejmani, T. Geernaert, S. Eve, N. Lammens, G. Luyckx, E. Voet, J. Degrieck, K. Adesanya, W. Urbanczyk, P. Mergo, M. Becker, H. Bartelt, F. Berghmans, and H. Thienpont, “Micro-structured optical fiber sensors embedded in laminate composite for smart material applications,” Sensors 11, 2566–2579 (2011). [CrossRef]
  9. N. Linze, P. Tihon, O. Verlinden, P. Mégret, and M. Wuilpart, “Quasi-distributed vibration sensor based on polarization-sensitive measurement,” Proc. SPIE 7753, 77532Z (2011).
  10. D. H. Kim and J. U. Kang, “Analysis of temperature-dependent birefringence of a polarization-maintaining photonic crystal fiber,” Opt. Eng. 46, 075003 (2007). [CrossRef]
  11. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (Elsevier, 1989).
  12. A. M. Smith, “Single-mode fiber pressure sensitivity,” Electron. Lett. 16, 773–774 (1980). [CrossRef]
  13. R. Gafsi and M. A. El-Sherif, “Analysis of induced-birefringence effects on fiber Bragg gratings,” Opt. Fiber Technol. 6, 299–323 (2000). [CrossRef]
  14. E. Chehura, C. C. Ye, S. E. Staines, S. W. James, and R. P. Tatam, “Characterization of the response of fibre Bragg gratings fabricated in stress and geometrically induced high birefringence fibres to temperature and transverse load,” Smart Mater. Struct. 13, 888–895 (2004). [CrossRef]
  15. A. Barlow and D. Payne, “The stress-optic effect in optical fibers,” J. Quantum Electron. 19, 834–839 (1983). [CrossRef]
  16. S. Sulejmani, C. Sonnenfeld, T. Geernaert, P. Mergo, M. Makara, K. Poturaj, K. Skorupski, T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, W. Urbanczyk, C. Caucheteur, K. Chah, P. Megret, H. Terryn, J. Van Roosbroeck, F. Berghmans, and H. Thienpont, “Control over the pressure sensitivity of Bragg grating-based sensors in highly birefringent microstructured optical fibers,” IEEE Photon. Technol. Lett. 24, 527–529 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited