OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 25 — Sep. 1, 2012
  • pp: 6172–6178

Development of an ice crystal scattering database for the global change observation mission/second generation global imager satellite mission: investigating the refractive index grid system and potential retrieval error

Husi Letu, Takashi Y. Nakajima, and Takashi N. Matsui  »View Author Affiliations


Applied Optics, Vol. 51, Issue 25, pp. 6172-6178 (2012)
http://dx.doi.org/10.1364/AO.51.006172


View Full Text Article

Enhanced HTML    Acrobat PDF (479 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Computing time and retrieval error of the effective particle radius are important considerations when developing an ice crystal scattering database to be used in radiative transfer simulation and satellite remote sensing retrieval. Therefore, the light scattering database should be optimized based on the specifications of the satellite sensor. In this study, the grid system of the complex refractive index in the 1.6 μm (SW3) channel of the Global Change Observation Mission/Second Generation Global Imager satellite sensor is investigated for optimizing the ice crystal scattering database. This grid system is separated into twelve patterns according to the step size of the real and imaginary parts of the refractive index. Specifically, the LIght Scattering solver Applicable to particles of arbitrary Shape/Geometrical-Optics Approximation technique is used to simulate the scattering of light by randomly oriented large hexagonal ice crystals. The difference of radiance with different step size of the refractive index is calculated from the developed light scattering database using the radiative transfer (R-STAR) solver. The results indicated that the step size of the real part is a significant factor in difference of radiance.

© 2012 Optical Society of America

OCIS Codes
(010.2940) Atmospheric and oceanic optics : Ice crystal phenomena
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: April 17, 2012
Revised Manuscript: August 3, 2012
Manuscript Accepted: August 7, 2012
Published: August 29, 2012

Citation
Husi Letu, Takashi Y. Nakajima, and Takashi N. Matsui, "Development of an ice crystal scattering database for the global change observation mission/second generation global imager satellite mission: investigating the refractive index grid system and potential retrieval error," Appl. Opt. 51, 6172-6178 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-25-6172


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. P. Wylie, W. P. Menzel, H. M. Woolf, and K. I. Strabala, “Four years of global cirrus cloud statistics using HIRS,” J. Clim. 7, 1972–1986 (1994). [CrossRef]
  2. K. N. Liou, “Influence of cirrus clouds on weather and climate processes: A global perspective,” Mon. Weather Rev. 114, 1167–1199 (1986). [CrossRef]
  3. G. L. Stephens, S. C. Tsay, P. W. Stackhouse, and P. J. Flatau, “The relevance of the microphysical and radiative properties of cirrus clouds to climate and climate feedback,” J. Atmos. Sci. 47, 1742–1754 (1990). [CrossRef]
  4. J. Dim, H. Murakami, T. Y. Nakajima, B. Nordell, A. Heidinger, and T. Takamura, “The recent state of the climate: driving components of cloud type variability,” J. Geophys. Res. 116, D11117 (2011). [CrossRef]
  5. J. Riedi, M. Doutriaux-Boucher, P. Goloub, and P. Couvert, “Global distribution of cloud top phase from POLDER/ADEOS I,” Geophys. Res. Lett. 27, 1707–1710 (2000). [CrossRef]
  6. P. Yang, Z. Zhang, G. W. Kattawar, S. G. Warren, B. A. Baum, H.-L. Huang, Y. Hu, D. Winker, and J. Iaquinta, “Effect of cavities on the optical properties of bullet rosettes: Implications for active and passive remote sensing of ice cloud properties,” J. Appl. Meteorol. Clim. 47, 2311–2330 (2008). [CrossRef]
  7. G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. 330, 377–445 (1908). [CrossRef]
  8. T. Y. Nakajima and T. Nakajima, “Wide-area determination of cloud microphysical properties from NOAA AVHRR measurements for FIRE and ASTEX regions,” J. Atmos. Sci. 52, 4043–4059 (1995). [CrossRef]
  9. T. Nakajima and M. Tanaka, “Matrix formulations for the transfer of solar radiation in a plane-parallel scattering atmosphere,” J. Quant. Spectrosc. Radiat. Transfer 35, 13–21 (1986). [CrossRef]
  10. A. Macke, “Scattering of light by polyhedral ice crystals,” Appl. Opt. 32, 2780–2788 (1993). [CrossRef]
  11. Y. Takano and K. N. Liou, “Radiative transfer in cirrus clouds. III. Light scattering by irregular ice crystals,” J. Atmos. Sci. 52, 818–837 (1995). [CrossRef]
  12. P. Yang and K. N. Liou, “Geometric-optics-integral equation method for light scattering by nonspherical ice crystals,” Appl. Opt. 35, 6568–6584 (1996). [CrossRef]
  13. H. Ishimoto, K. Masuda, Y. Mano, N. Orikasa, and A. Uchiyama, “Irregularly shaped ice aggregates in optical modeling of convectively generated ice clouds,” J. Quant. Spectrosc. Radiat. Transfer 113, 632–643 (2012). [CrossRef]
  14. P. Yang and K. N. Liou, “Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space,” J. Opt. Soc. Am. 13, 2072–2085 (1996). [CrossRef]
  15. Y. Mano, “Exact solution of electromagnetic scattering by a three-dimensional hexagonal ice column obtained with the boundary-element method,” Appl. Opt. 39, 5541–5546 (2000). [CrossRef]
  16. T. Y. Nakajima, T. Nakajima, K. Yoshimori, S. K. Mishra, and S. N. Tripathi, “Development of a light scattering solver applicable to particles of arbitrary shape on the basis of the surface integral equations method of Müller-type (SIEMM): Part I. Methodology, accuracy of calculation, and electromagnetic current on the particle urface,” Appl. Opt. 48, 3526–3536 (2009). [CrossRef]
  17. Q. Fu, “An accurate parameterization of the solar radiative properties of cirrus clouds for climate models,” J. Climate 9, 2058–2082 (1996). [CrossRef]
  18. Q. Fu, P. Yang, and W. B. Sun, “An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models,” J. Climate 25, 2223–2237 (1998). [CrossRef]
  19. Q. Fu, “A new parameterization of an asymmetry factor of cirrus clouds for climate models,” J. Atmos. Sci. 64, 4144–4154 (2007). [CrossRef]
  20. L. Bi, P. Yang, G. W. Kattawar, and R. Kahn, “Single-scattering properties of tri-axial ellipsoidal particles for a size parameter range from the Rayleigh to geometric-optics regimes,” Appl. Opt. 48, 114–126 (2009). [CrossRef]
  21. L. Bi, P. Yang, G. W. Kattawar, Y. Hu, and B. A. Baum, “Scattering and absorption of light by ice particles: solution by a new physical-geometric optics hybrid method,” J. Quant. Spectrosc. Radiat. Transfer 112, 1492–1508 (2011). [CrossRef]
  22. P. Yang, K. N. Liou, K. Wyser, and D. Mitchell, “Parameterization of the scattering and absorption properties of individual ice crystals,” J. Geophys. Res. 105, 4699–4718 (2000). [CrossRef]
  23. P. Yang, H. Wei, H.-L. Huang, B. A. Baum, Y. X. Hu, G. W. Kattawar, M. I. Mishchenko, and Q. Fu, “Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region,” Appl. Opt. 44, 5512–5523 (2005). [CrossRef]
  24. M. I. Mishchenko and L. D. Travis, “Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented rotationally symmetric scatterers,” J. Quant. Spectrosc. Radiat. Transfer 60, 309–324 (1998). [CrossRef]
  25. A. Heymsfield, “Ice crystal terminal velocities,” J. Atmos. Sci. 29, 1348–1357 (1972). [CrossRef]
  26. T. Y. Nakajima, T. Nakajima, and A. K. Alexander, “Radiance transfer through light scattering media with nonspherical large particles: direct and indirect problems,” Proc. SPIE 3220, 2–12 (1997). [CrossRef]
  27. K. Tanaka, Y. Okamura, T. Amano, M. Hiramatsu, and K. Shiratama, “Development status of the second-generation global imager (SGLI) on GCOM-C,” Proc. SPIE 7474, 74740N (2009). [CrossRef]
  28. M. Hiramatsu, K. Tanaka, Y. Okamura, T. Amano, and K. Shiratama, “Design challenge on forthcoming SGLI boarded on GCOM-C,” Proc. SPIE 6744, 67440L (2007). [CrossRef]
  29. T. Y. Nakajima, T. Tsuchiya, H. Ishida, T. N. Matsui, and H. Shimoda, “Cloud detection performance of spaceborne visible-to-infrared multispectral imager,” Appl. Opt. 50, 2601–2616 (2011). [CrossRef]
  30. T. Kobayashi, “The growth of snow crystals at low supersaturation,” Philadelphia Mag. 6, 1363–1370 (1961). [CrossRef]
  31. Y. Xie, P. Yang, G. W. Kattawar, P. Minnis, Y. X. Hu, and D. L. Wu, “Determination of ice cloud models using MODIS and MISR data,” Int. J. Remote Sens. 33, 4219–4253 (2012). [CrossRef]
  32. Z. Meng, P. Yang, G. W. Kattawar, L. Bi, K. N. Liou, and I. Laszlo, “Single-scattering properties of nonspherical mineral dust aerosols: A database for application to radiative transfer calculations,” J. Aerosol Sci. 41, 501–512 (2010). [CrossRef]
  33. Y. Xie, P. Yang, G. W. Kattawar, P. Minnis, and Y. X. Hu, “Effect of the inhomogeneity of ice crystals on retrieving ice cloud optical thickness and effective particle size,” J. Geophys. Res. 114, D11203 (2009). [CrossRef]
  34. X. Liu, S. Ding, L. Bi, and P. Yang, “On the use of scattering kernels to calculate ice cloud bulk optical properties,” J. Atmos. Ocean. Technol. 29, 50–63 (2012). [CrossRef]
  35. T. Y. Nakajima, K. Suzuki, and G. L. Stephens, “Droplet growth in warm water clouds observed by the A-Train. Part I: Sensitivity analysis of the MODIS-derived cloud droplet size,” J. Atmos. Sci. 67, 1884–1896 (2010). [CrossRef]
  36. T. Y. Nakajima, K. Suzuki, and G. L. Stephens, “Droplet growth in warm water clouds observed by the A-Train. Part II: A multi-sensor view,” J. Atmos. Sci. 67, 1897–1907 (2010). [CrossRef]
  37. S. G. Warren and R. E. Brandt, “Optical constants of ice from the ultraviolet to the microwave: a revised compilation,” J. Geophys. Res. 113, D14220 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited