OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 25 — Sep. 1, 2012
  • pp: 6179–6187

Residual-stress relaxation and densification in CO2-laser-induced long-period fiber gratings

Michael R. Hutsel and Thomas K. Gaylord  »View Author Affiliations

Applied Optics, Vol. 51, Issue 25, pp. 6179-6187 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (487 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The first concurrent measurements of the three-dimensional refractive-index and residual-stress distributions in a CO2-laser-irradiated fiber are presented. A Corning SMF-28 fiber was exposed from one side to focused pulses with durations of 100–500 ms. The cross-sectional form of the index modulation is asymmetric with changes concentrated on the side of the fiber facing the exposure. The longitudinal form is Gaussian-like with a wide top and extends approximately 100  μm from the center of the exposure. Relaxation of frozen-in viscoelasticity results in a maximum index modulation of 5×104 on the side of the fiber facing the exposure with mechanical stress relaxation contributing changes of less than 1×104.

© 2012 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2400) Fiber optics and optical communications : Fiber properties
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: June 29, 2012
Manuscript Accepted: July 19, 2012
Published: August 29, 2012

Michael R. Hutsel and Thomas K. Gaylord, "Residual-stress relaxation and densification in CO2-laser-induced long-period fiber gratings," Appl. Opt. 51, 6179-6187 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996). [CrossRef]
  2. A. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, P. J. Lemaire, N. S. Bergano, and C. R. Davidson, “Long-period fiber-grating-based gain equalizers,” Opt. Lett. 21, 336–338 (1996). [CrossRef]
  3. D. B. Stegall and T. Erdogan, “Dispersion control with use of long-period fiber gratings,” J. Opt. Soc. Am. A 17, 304–312 (2000). [CrossRef]
  4. Q. Li, C. H. Lin, A. A. Au, and H. P. Lee, “Compact all-fibre on-line power monitor via core-to-cladding mode coupling,” Electron. Lett. 38, 1013–1015 (2002). [CrossRef]
  5. K. S. Chiang, “Development of long-period fiber grating coupling devices,” Appl. Opt. 48, F61–F67 (2009). [CrossRef]
  6. S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14, R49–R61 (2003). [CrossRef]
  7. D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34, 302–303 (1998). [CrossRef]
  8. D. D. Davis, T. K. Gaylord, E. N. Glytsis, and S. C. Mettler, “Very-high-temperature stable CO2-laser-induced long-period fibre gratings,” Electron. Lett. 35, 740–742 (1999). [CrossRef]
  9. G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, and E. N. Glytsis, “Axial rotation dependence of resonances in curved CO2-laser-induced long-period fibre gratings,” Electron. Lett. 36, 1354–1355 (2000). [CrossRef]
  10. Y.-J. Rao, Y.-P. Wang, Z.-L. Ran, and T. Zhu, “Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses,” J. Lightwave Technol. 21, 1320–1327 (2003). [CrossRef]
  11. L. Drozin, P. Y. Fonjallaz, and L. Stensland, “Long-period fibre gratings written by CO2 exposure of H2-loaded, standard fibres,” Electron. Lett. 36, 742–744 (2000). [CrossRef]
  12. A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84, 19–21 (2004). [CrossRef]
  13. P. Helander, “Measurement of fictive temperature of silica glass optical fibers,” J. Mater. Sci. 39, 3799–3800 (2004). [CrossRef]
  14. S. Yamasaki, M. Akiyama, K. Nishide, A. Wada, and R. Yamauchi, “Characteristics of long-period fiber grating utilizing periodic stress relaxation,” IEICE Trans. Electron. E83-C, 440–443 (2000).
  15. C.-S. Kim, Y. Han, B. H. Lee, W.-T. Han, U.-C. Paek, and Y. Chung, “Induction of the refractive index change in B-doped optical fibers through relaxation of the mechanical stress,” Opt. Commun. 185, 337–342 (2000). [CrossRef]
  16. A. D. Yablon, “Optical and mechanical effects of frozen-in stresses and strains in optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10, 300–311 (2004). [CrossRef]
  17. M. R. Hutsel, R. R. Ingle, and T. K. Gaylord, “Accurate cross-sectional stress profiling of optical fibers,” Appl. Opt. 48, 4985–4995 (2009). [CrossRef]
  18. W. Primak and D. Post, “Photoelastic constants of vitreous silica and its elastic coefficient of refractive index,” J. Appl. Phys. 30, 779–788 (1959). [CrossRef]
  19. B. H. Kim, Y. Park, T. J. Ahn, D. Y. Kim, B. H. Lee, Y. Chung, U. C. Paek, and W. T. Han, “Residual stress relaxation in the core of optical fiber by CO2 laser irradiation,” Opt. Lett. 26, 1657–1659 (2001). [CrossRef]
  20. B. H. Kim, T. J. Ahn, D. Y. Kim, B. H. Lee, Y. Chung, U. C. Paek, and W. T. Han, “Effect of CO2 laser irradiation on the refractive-index change in optical fibers,” Appl. Opt. 41, 3809–3815 (2002). [CrossRef]
  21. Y. J. Li, T. Wei, J. A. Montoya, S. V. Saini, X. W. Lan, X. L. Tang, J. H. Dong, and H. Xiao, “Measurement of CO2-laser-irradiation-induced refractive index modulation in single-mode fiber toward long-period fiber grating design and fabrication,” Appl. Opt. 47, 5296–5304 (2008). [CrossRef]
  22. T. Hirose, K. Saito, and K. Takada, “Mid-infrared spectroscopic detection of refractive index in CO2 laser-written long-period fibre grating,” Electron. Lett. 44, 1187–1189 (2008). [CrossRef]
  23. H. S. Ryu, Y. Park, S. T. Oh, Y. J. Chung, and D. Y. Kim, “Effect of asymmetric stress relaxation on the polarization-dependent transmission characteristics of a CO2 laser-written long-period fiber grating,” Opt. Lett. 28, 155–157 (2003). [CrossRef]
  24. B. L. Bachim, “Characteristics, applications, and properties of carbon-dioxide-laser-induced long-period fiber gratings,” Ph.D. thesis (Georgia Institute of Technology, 2005).
  25. M. I. Braiwish, B. L. Bachim, and T. K. Gaylord, “Prototype CO2 laser-induced long-period fiber grating variable optical attenuators and optical tunable filters,” Appl. Opt. 43, 1789–1793 (2004). [CrossRef]
  26. M. R. Hutsel and T. K. Gaylord, “Concurrent three-dimensional characterization of the refractive-index and residual-stress distributions in optical fibers,” Appl. Opt. 51, 5442–5452 (2012). [CrossRef]
  27. M. R. Hutsel, “Characterization of the stress and refractive-index distributions in optical fibers and fiber-based devices,” Ph.D. thesis (Georgia Institute of Technology, 2011).
  28. D. A. Viskoe and G. W. Donohoe, “Optimal computed tomography data acquisition techniques and filter selection for detection of small density variations,” IEEE Trans. Instrum. Meas. 45, 70–76 (1996). [CrossRef]
  29. G. W. Scherer, “Stress-induced index profile distortion in optical waveguides,” Appl. Opt. 19, 2000–2006 (1980). [CrossRef]
  30. L. Rongved, C. R. Kurjian, and F. T. Geyling, “Mechanical tempering of optical fibers,” J. Non-Cryst. Solids 42, 579–584 (1980). [CrossRef]
  31. A. K. Varshneya, D. Varshneya, and V. Jain, “On ‘mechanical tempering of optical fibers’,” J. Non-Cryst. Solids 93, 215–216 (1987). [CrossRef]
  32. E. Anemogiannis, E. N. Glytsis, and T. K. Gaylord, “Transmission characteristics of long-period fiber gratings having arbitrary azimuthal/radial refractive index variations,” J. Lightwave Technol. 21, 218–227 (2003). [CrossRef]
  33. H. Hochreiner, M. Cada, and P. D. Wentzell, “Modeling the response of a long-period fiber grating to ambient refractive index change in chemical sensing applications,” J. Lightwave Technol. 26, 1986–1992 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited