OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 25 — Sep. 1, 2012
  • pp: 6196–6206

Improving optical measurement uncertainty with combined multitool metrology using a Bayesian approach

Nien Fan Zhang, Richard M. Silver, Hui Zhou, and Bryan M. Barnes  »View Author Affiliations


Applied Optics, Vol. 51, Issue 25, pp. 6196-6206 (2012)
http://dx.doi.org/10.1364/AO.51.006196


View Full Text Article

Enhanced HTML    Acrobat PDF (396 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Recently, there has been significant research investigating new optical technologies for dimensional metrology of features 22 nm in critical dimension and smaller. When modeling optical measurements, a library of curves is assembled through the simulation of a multidimensional parameter space. A nonlinear regression routine described in this paper is then used to identify an optimum set of parameters that yields the closest experiment-to-theory agreement. However, parametric correlation, measurement noise, and model inaccuracy all lead to measurement uncertainty in the fitting process for optical critical dimension measurements. To improve the optical measurements, other techniques such as atomic force microscopy and scanning electronic microscopy can also be used to provide supplemental a priori information. In this paper, a Bayesian statistical approach is proposed to allow the combination of different measurement techniques that are based on different physical measurements. The effect of this hybrid metrology approach will be shown to reduce the uncertainties of the parameter estimators.

OCIS Codes
(120.3940) Instrumentation, measurement, and metrology : Metrology
(180.5810) Microscopy : Scanning microscopy
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: January 11, 2012
Revised Manuscript: June 14, 2012
Manuscript Accepted: July 20, 2012
Published: August 30, 2012

Citation
Nien Fan Zhang, Richard M. Silver, Hui Zhou, and Bryan M. Barnes, "Improving optical measurement uncertainty with combined multitool metrology using a Bayesian approach," Appl. Opt. 51, 6196-6206 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-25-6196


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. M. Silver, B. M. Barnes, R. Attota, R. Jun, M. Stocker, E. Marx, and H. J. Patrick, “Scatterfield microscopy for extending the limits of image-based optical metrology,” Appl. Opt. 46, 4248–4257 (2007). [CrossRef]
  2. H. J. Patrick, R. Attota, B. M. Barnes, T. A. Germer, R. G. Dixson, M. T. Stocker, R. M. Silver, and M. R. Bishop, “Optical critical dimension measurement of silicon grating targets using back focal plane scatterfield microscopy,” J. Micro/Nanolith. MEMS MOEMS 7, 013012 (2008). [CrossRef]
  3. B. M. Barnes, R. Attota, L. P. Howard, P. Lipscomb, M. T. Stocker, and R. M. Silver, “Zero-order and super-resolved imaging of arrayed nanoscale lines using scatterfield microscopy,” in 2007 International Conference on Frontiers of Characterization and Metrology , Vol. 931 of AIP Conference Proceedings (2007), pp. 397–401.
  4. R. M. Silver, B. M. Barnes, H. Zhou, N. F. Zhang, and R. Dixson, “Angle-resolved optical metrology using multi-technique nested uncertainties,” Proc. SPIE 7390, 73900P (2009). [CrossRef]
  5. M. G. Moharam, M. G. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995). [CrossRef]
  6. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077–1086 (1995). [CrossRef]
  7. P. Lalanne and G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13, 779–784 (1996). [CrossRef]
  8. A. Taflove and M. E. Brodwin, “Numerical solution of steady-state electromagnetic scattering problems using time-dependent Maxwell’s Equations,” IEEE Trans. Microwave Theory Tech. 23, 623–630 (1975). [CrossRef]
  9. R. M. Silver, N. F. Zhang, B. M. Barnes, H. Zhou, A. Heckert, R. Dixson, T. A. Germer, and B. Bunday, “Improving optical measurement accuracy using multi-technique nested uncertainties,” Proc. SPIE 7272, 727202 (2009). [CrossRef]
  10. R. M. Silver, B. M. Barnes, A. Heckert, R. Attota, R. Dixson, and J. Jun, “Angle resolved optical metrology,” Proc. SPIE 6922, 69221M (2008). [CrossRef]
  11. J. Neter, W. Wasserman, and M. H. Kutner, Applied Linear Regression Models (Richard D. Irwin, 1983).
  12. C. R. Rao and H. Toutenburg, Linear Models: Least Squares and Alternatives (Springer, 1995).
  13. D. M. Bates and D. G. Watts, Nonlinear Regression Analysis and Its Applications (Wiley, 1988).
  14. R. M. Silver, T. A. Germer, R. Attota, B. M. Barnes, B. Bunday, J. Allgair, E. Marx, and J. Jun, “Fundamental limits of optical critical dimension metrology: a simulation study,” Proc. SPIE 6518, 65180U (2007). [CrossRef]
  15. A. Vaid, B. B. Yan, Y. T. Jiang, M. Kelling, C. Hartig, J. Allgair, P. Ebersbach, M. Sendelbach, N. Rana, A. Katnani, E. Mclellan, C. Archie, C. Bozdog, H. Kim, M. Sendler, S. Ng, B. Sherman, B. Brill, I. Turovets, and R. Urensky, “Holistic metrology approach: hybrid metrology utilizing scatterometry, critical dimension-atomic force microscope and critical dimension-scanning electron microscope,” J. Micro/Nanolith. MEMS MOEMS 10, 043016 (2011).
  16. S. Press, Bayesian Statistics: Principles, Models, and Applications (Wiley, 1989).
  17. A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin, Bayesian Data Analysis (Chapman & Hall/CRC, 2004).
  18. D. J. Lunn, A. Thomas, N. Best, and D. Spiegelhalter, “WinBUGS—a Bayesian modeling framework: concepts, structure, and extensibility,” Stat. Comput. 10, 325–337 (2000). [CrossRef]
  19. D. V. Lindley and A. F. M. Smith, “Bayes estimates for the linear model,” J. R. Stat. Soc. Ser. B. Methodol.1–41 (1972).
  20. S. Kocherlakota and K. E. Kocherlakota, Encyclopedia of Statistical Sciences (Wiley, 1983), Vol. 3, pp. 354–355.
  21. H. K. Iyer, C. M. Wang, and D. F. Vecchia, “Consistency tests for key comparison data,” Metrologia 41, 223–230 (2004). [CrossRef]
  22. M. G. Cox, “The evaluation of key comparison data,” Metrologia 39, 589–595 (2002). [CrossRef]
  23. Certain commercial equipment, instruments, or materials are identified in this paper in order to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose.
  24. G. H. Golub and C. H. Van Loan, Matrix Computations (Johns Hopkins University, 1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited