OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 25 — Sep. 1, 2012
  • pp: 6207–6219

Horizontal lidar measurements for the proof of spontaneous Rayleigh–Brillouin scattering in the atmosphere

Benjamin Witschas, Christian Lemmerz, and Oliver Reitebuch  »View Author Affiliations


Applied Optics, Vol. 51, Issue 25, pp. 6207-6219 (2012)
http://dx.doi.org/10.1364/AO.51.006207


View Full Text Article

Acrobat PDF (1165 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Several atmospheric lidar techniques rely on the exact knowledge of the spectral line shape of molecular scattered light in air, which, however, has not been accurately measured in real atmosphere up to now. In this paper we report on the investigation of spontaneous Rayleigh–Brillouin scattering within the atmosphere, utilizing horizontal lidar measurements (λ=355  nm, θ=180°) performed from the mountain observatory Schneefernerhaus (2650 m), located below Germany’s highest mountain, the Zugspitze. These lidar measurements give proof of the effect of Brillouin scattering within the atmosphere for the first time to our knowledge. The measurements confirm that the Tenti S6 model can be used to adequately describe spontaneous Rayleigh–Brillouin spectra of light scattered in air under real atmospheric conditions. The presented results are of relevance for spectrally resolving lidars like those deployed on the Atmospheric Dynamics Mission Aeolus (ADM–Aeolus) andthe Earth Clouds, Aerosols, and Radiation Explorer Mission (EarthCARE).

© 2012 Optical Society of America

OCIS Codes
(280.3640) Remote sensing and sensors : Lidar
(290.1310) Scattering : Atmospheric scattering
(290.5820) Scattering : Scattering measurements
(290.5830) Scattering : Scattering, Brillouin
(290.5870) Scattering : Scattering, Rayleigh
(300.6320) Spectroscopy : Spectroscopy, high-resolution

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: June 19, 2012
Manuscript Accepted: July 16, 2012
Published: August 30, 2012

Citation
Benjamin Witschas, Christian Lemmerz, and Oliver Reitebuch, "Horizontal lidar measurements for the proof of spontaneous Rayleigh–Brillouin scattering in the atmosphere," Appl. Opt. 51, 6207-6219 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-25-6207


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. McGill, W. Skinner, and T. Irgang, “Validation of wind profiles measured with incoherent Doppler lidar,” Appl. Opt. 36, 1928–1932 (1997). [CrossRef]
  2. C. Flesia and C. L. Korb, “Theory of the double-edge molecular technique for Doppler lidar wind measurement,” Appl. Opt. 38, 432–440 (1999). [CrossRef]
  3. B. M. Gentry, H. Chen, and S. X. Li, “Wind measurements with 355 nm molecular Doppler lidar,” Opt. Lett. 25, 1231–1233 (2000). [CrossRef]
  4. A. Dabas, M. Denneulin, P. Flamant, C. Loth, A. Garnier, and A. Dolfi-Bouteyre, “Correcting winds measured with a Rayleigh Doppler lidar from pressure and temperature effects,” Tellus A 60, 206–215 (2008). [CrossRef]
  5. O. Reitebuch, C. Lemmerz, E. Nagel, and U. Paffrath, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM–Aeolus. Part I: instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26, 2501–2515 (2009). [CrossRef]
  6. O. Reitebuch, “Wind lidar for atmospheric research,” in Atmospheric Physics: Background—Methods—Trends, U. Schumann, ed. (Springer, 2012), pp. 487–507.
  7. Z.-S. Liu, D.-C. Bi, X.-Q. Song, J.-B. Xia, R.-Z. Li, Z.-J. Wang, and C.-Y. She, “Iodine-filter-based high spectral resolution lidar for atmospheric temperature measurements,” Opt. Lett. 34, 2712–2714 (2009). [CrossRef]
  8. H. Shimizu, K. Noguchi, and C.-Y. She, “Atmospheric temperature measurement by a high spectral resolution lidar,” Appl. Opt. 25, 1460–1466 (1986). [CrossRef]
  9. E. Eloranta, “High spectral resolution lidar,” in Lidar, C. Weitkamp, ed. (Springer, 2005), pp. 143–163.
  10. G. Fiocco and B. J. DeWolf, “Frequency spectrum of laser echoes from atmospheric constituents and determination of the aerosol content of air,” J. Atmos. Sci. 25, 488–496 (1968). [CrossRef]
  11. B. Y. Liu, M. Esselborn, M. Wirth, A. Fix, D. B. Bi, and G. Ehret, “Influence of molecular scattering models on aerosol optical properties measured by high spectral resolution lidar,” Appl. Opt. 48, 5143–5153 (2009). [CrossRef]
  12. M. Esselborn, M. Wirth, A. Fix, M. Tesche, and G. Ehret, “Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients,” Appl. Opt. 47, 346–358 (2008). [CrossRef]
  13. B. Witschas, “Light scattering on molecules in the atmosphere,” in Atmospheric Physics: Background—Methods—Trends, U. Schumann, ed. (Springer, 2012), pp. 69–83.
  14. L. Fabelinski, The Molecular Scattering of Light (Plenum, 1968).
  15. A. T. Young, “Rayleigh scattering,” Appl. Opt. 20, 533–535 (1981). [CrossRef]
  16. B. Witschas, M. O. Vieitez, E.-J. van Duijn, O. Reitebuch, W. van de Water, and W. Ubachs, “Spontaneous Rayleigh–Brillouin scattering of ultraviolet light in nitrogen, dry air, and moist air,” Appl. Opt. 49, 4217–4227 (2010). [CrossRef]
  17. V. Ghaem-Maghami and A. D. May, “Rayleigh–Brillouin spectrum of compressed He, Ne, and Ar. I. Scaling,” Phys. Rev. A 22, 692–697 (1980). [CrossRef]
  18. E. H. Hara, A. D. May, and H. F. P. Knapp, “Rayleigh–Brillouin scattering in compressed H2, D2, and HD,” Can. J. Phys. 49, 420–431 (1971). [CrossRef]
  19. J. A. Lock, R. G. Seasholtz, and W. T. John, “Rayleigh–Brillouin scattering to determine one-dimensional temperature and number density profiles of a gas flow field,” Appl. Opt. 31, 2839–2848 (1992). [CrossRef]
  20. T. J. Greytak and G. B. Benedek, “Spectrum of light from thermal fluctuations in gases,” Phys. Rev. Lett. 17, 179–182 (1966). [CrossRef]
  21. G. Tenti, C. Boley, and R. Desai, “On the kinetic model description of Rayleigh–Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974). [CrossRef]
  22. C. Boley, R. Desai, and G. Tenti, “Kinetic models and Brillouin scattering in a molecular gas,” Can. J. Phys. 50, 2158–2173 (1972). [CrossRef]
  23. U.S. Standard Atmosphere (1976), “U.S. Standard Atmosphere, 1962” (U.S. Government Printing Office, 1962).
  24. X. Pan, “Coherent Rayleigh–Brillouin Scattering,” Ph.D. thesis (Princeton University, 2003).
  25. W. Ubachs, E.-J. van Duijn, M. O. Vieitez, W. van de Water, N. Dam, J. J. ter Meulen, A. S. Meijer, J. de Kloe, A. Stoffelen, and E. A. A. Aben, “A spontaneous Rayleigh–Brillouin scattering experiment for the characterization of atmospheric lidar backscatter,” European Space Research contract final report, no. 1-5467/07/NL/HE (European Space Research and Technology Centre, 2009).
  26. M. O. Vieitez, E.-J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. de Wijn, N. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh–Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82, 043836 (2010). [CrossRef]
  27. P. H. Flamant, A. Dabas, M. L. Denneulin, A. Dolfi-Bouteyre, A. Garnier, and D. Rees, “ILIAD: Impact of Line Shape on ADM–Aeolus Doppler Estimates,” European Space Research contract final report, no. 1833404/NL/MM (European Space Research and Technology Centre, 2005).
  28. European Space Agency, “ADM–Aeolus,” science report, ESA SP-1311 (European Space Research and Technology Centre, 2008).
  29. O. Reitebuch, “The spaceborne wind lidar mission ADM–Aeolus,” in Atmospheric Physics: Background—Methods—Trends, U. Schumann, ed. (Springer, 2012), pp. 815–827.
  30. U. Paffrath, C. Lemmerz, O. Reitebuch, B. Witschas, I. Nikolaus, and V. Freudenthaler, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM–Aeolus. Part II: simulations and Rayleigh receiver radiometric performance,” J. Atmos. Ocean. Technol. 26, 2516–2530 (2009). [CrossRef]
  31. T. Schröder, C. Lemmerz, O. Reitebuch, M. Wirth, C. Wührer, and R. Treichel, “Frequency jitter and spectral width of an injection-seeded Q-switched Nd:YAG laser for a Doppler wind lidar,” Appl. Phys. B 87, 437–444 (2007). [CrossRef]
  32. B. Witschas, “Characterization of beam profile and frequency stability of an injection-seeded Nd:YAG laser for a Doppler wind lidar system,” master thesis (University of Applied Sciences Munich, 2007).
  33. S. Henderson, E. Yuen, and E. Fry, “Fast resonance-detection technique for single-frequency operation of injection-seeded Nd:YAG lasers,” Opt. Lett. 11, 715–717 (1986). [CrossRef]
  34. R. Schmitt and L. Rahn, “Diode-laser-pumped Nd:YAG laser injection seeding system,” Appl. Opt. 25, 629–633(1986). [CrossRef]
  35. E. Fry, Q. Hu, and X. Li, “Single frequency operation of an injection-seeded Nd:YAG laser in high noise and vibration environments,” Appl. Opt. 30, 1015–1017 (1991). [CrossRef]
  36. G. Hernandez, Fabry–Perot Interferometers (Cambridge University, 1988).
  37. J. M. Vaughan, The Fabry–Perot Interferometer (Adam Hilger, 1989).
  38. P. Wilksch, “Instrument function of the Fabry–Perot spectrometer,” Appl. Opt. 24, 1502–1511 (1985). [CrossRef]
  39. G. Hernandez, “Analytical description of a Fabry–Perot photoelectric spectrometer,” Appl. Opt. 5, 1745–1748(1966). [CrossRef]
  40. F. Bayer-Helms, “Analyse von Linienprofilen. I. Grundlagen und Messeinrichtungen,” Z. Angew. Phys. 15, 330–338(1963).
  41. E. Palik, H. Boukari, and R. Gammon, “Experimental study of the effect of surface defects on the finesse and contrast of a Fabry–Perot interferometer,” Appl. Opt. 35, 38–50 (1996). [CrossRef]
  42. M. McGill, W. Skinner, and T. Irgang, “Analysis techniques for the recovery of winds and backscatter coefficients from a multiple-channel incoherent Doppler lidar,” Appl. Opt. 36, 1253–1268 (1997). [CrossRef]
  43. K. Krebs and A. Sauer, “Über die Intensitätsverteilung von Spektrallinien im Pérot–Fabry-Interferometer,” Ann. Phys. 448, 359–368 (1953). [CrossRef]
  44. U. Paffrath, “Performance assessment of the Aeolus Doppler wind lidar prototype,” Ph.D. thesis (Technical University of Munich, 2006).
  45. B. Witschas, “Analytical model for Rayleigh–Brillouin line shapes in air,” Appl. Opt. 50, 267–270 (2011). [CrossRef]
  46. L. Ries, Federal Environmental Agency (Umweltbundesamt) (personal communication, 2010).
  47. R. Figgins, “Inelastic light scattering in liquids: Brillouin scattering,” Contemp. Phys. 12, 283–297 (1971). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited