OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 25 — Sep. 1, 2012
  • pp: 6245–6251

Light-trapping design of graphene transparent electrodes for efficient thin-film silicon solar cells

Yongxiang Zhao, Fei Chen, Qiang Shen, and Lianmeng Zhang  »View Author Affiliations


Applied Optics, Vol. 51, Issue 25, pp. 6245-6251 (2012)
http://dx.doi.org/10.1364/AO.51.006245


View Full Text Article

Enhanced HTML    Acrobat PDF (599 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, the performance of solar cells with graphene transparent electrodes is compared with cells using conventional indium tin oxide (ITO) electrodes, and it is demonstrated the optical absorption of solar cells with bare graphene structure is worse than that of bare ITO structure because of the higher refractive index of graphene. To enhance the light trapping of graphene-based thin-film solar cells, a simple two-layer SiO2/SiC structure is proposed as antireflection coatings deposited on top of graphene transparent electrodes, and the thickness of each layer is optimized by differential evolution in order to enhance the optical absorption of a-Si:H thin-film solar cells to the greatest degree. The optimization results demonstrate the optimal SiO2/SiC/graphene structure can obtain 37.30% enhancement with respect to bare ITO structure, which has obviously exceeded the light-trapping enhancement of 34.15% for the optimal SiO2/SiC/ITO structure. Therefore, with the aid of the light-trapping structure, the graphene films are a very promising indium-free transparent electrode substitute for the conventional ITO electrode for use in cost-efficient thin-film silicon solar cells.

© 2012 Optical Society of America

OCIS Codes
(040.5350) Detectors : Photovoltaic
(160.4760) Materials : Optical properties
(310.1210) Thin films : Antireflection coatings
(310.6860) Thin films : Thin films, optical properties
(310.4165) Thin films : Multilayer design

ToC Category:
Thin Films

History
Original Manuscript: May 3, 2012
Revised Manuscript: August 8, 2012
Manuscript Accepted: August 11, 2012
Published: August 31, 2012

Citation
Yongxiang Zhao, Fei Chen, Qiang Shen, and Lianmeng Zhang, "Light-trapping design of graphene transparent electrodes for efficient thin-film silicon solar cells," Appl. Opt. 51, 6245-6251 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-25-6245


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovoltaics 12, 113–142 (2004). [CrossRef]
  2. D. E. Carlson and C. R. Wronski, “Amorphous silicon solar cell,” Appl. Phys. Lett. 28, 671–673 (1976). [CrossRef]
  3. J. K. Wassei and R. B. Kaner, “Graphene, a promising transparent conductor,” Mater. Today 13, 52–59 (2010). [CrossRef]
  4. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005). [CrossRef]
  5. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007). [CrossRef]
  6. C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321, 385–388 (2008). [CrossRef]
  7. V. C. Tung, L. M. Chen, M. J. Allen, J. K. Wassei, K. Nelson, R. B. Kaner, and Y. Yang, “Low-temperature solution processing of graphene–carbon nanotube hybrid materials for high-performance transparent conductors,” Nano Lett. 9, 1949–1955 (2009). [CrossRef]
  8. S. Bae, H. Kim, Y. Lee, X. Xu, J. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. Kim, K. S. Kim, B. Özyilmaz, J. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30 inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5, 574–578 (2010). [CrossRef]
  9. M. A. Green, “Lambertian light trapping in textured solar cells and light-emitting diodes: analytical solution,” Prog. Photovoltaics 10, 235–241 (2002). [CrossRef]
  10. Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8, 1501–1505 (2008). [CrossRef]
  11. S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett. 93, 251108 (2008). [CrossRef]
  12. Y. M. Song, J. S. Yu, and Y. T. Lee, “Antireflective submicrometer gratings on thin-film silicon solar cells for light-absorption enhancement,” Opt. Lett. 35, 276–278 (2010). [CrossRef]
  13. J. Y. Chyan, W. C. Hsu, and J. A. Yeh, “Broadband antireflective poly-Si nanosponge for thin film solar cells,” Opt. Express 17, 4646–4651 (2009). [CrossRef]
  14. X. Li, J. Gao, L. Xue, and Y. Han, “Porous polymer films with gradient-refractive-index structure for broadband and omnidirectional antireflection coatings,” Adv. Funct. Mater. 20, 259–265 (2010). [CrossRef]
  15. Yu. A. Akimov, W. S. Koh, S. Y. Sian, and S. Ren, “Nanoparticle-enhanced thin film solar cells: metallic or dielectric nanoparticles?,” Appl. Phys. Lett. 96, 073111 (2010). [CrossRef]
  16. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008). [CrossRef]
  17. M. Bruna and S. Borini, “Optical constants of graphene layers in the visible range,” Appl. Phys. Lett. 94, 031901 (2009). [CrossRef]
  18. L. Wu, H. S. Chu, W. S. Koh, and E. P. Li, “Highly sensitive graphene biosensors based on surface plasmon resonance,” Opt. Express 18, 14395–14400 (2010). [CrossRef]
  19. S. H. Choi, Y. L. Kim, and K. M. Byun, “Graphene-on-silver substrates for sensitive surface plasmon resonance imaging biosensors,” Opt. Express 19, 458–466 (2011). [CrossRef]
  20. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966). [CrossRef]
  21. R. J. Luebbers, F. Hunsberger, K. S. Kunz, R. B. Standler, and M. Schneider, “A frequency-dependent finite-difference time-domain formulation for dispersive materials,” IEEE Trans. Electromagn. Compat. 32, 222–227 (1990). [CrossRef]
  22. http://www.sopra-sa.com .
  23. Y. X. Zhao, F. Chen, H. Y. Chen, N. Li, Q. Shen, and L. M. Zhang, “The microstructure design optimization of negative index metamaterials using genetic algorithm,” Prog. Electromag. Res. Lett. 22, 95–108 (2011).
  24. K. Siakavara, “Novel fractal antenna arrays for satellite networks: circular ring Sierpinski carpet arrays optimized by genetic algorithms,” Prog. Electromagn. Res. 103, 115–138 (2010). [CrossRef]
  25. R. Storn and K. Price, “Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces,” J. Global Optim. 11, 341–359 (1997). [CrossRef]
  26. Y. X. Zhao, F. Chen, Q. Shen, Q. W. Liu, and L. M. Zhang, “Optimizing low loss negative index metamaterial for visible spectrum using differential evolution,” Opt. Express 19, 11605–11614 (2011). [CrossRef]
  27. Y. X. Zhao, F. Chen, Q. Shen, and L. M. Zhang, “Optimizing low loss silver nanowires structure metamaterial at yellow light spectrum with differential evolution,” Phys. Lett. A 376, 252–256 (2012). [CrossRef]
  28. Y. X. Zhao, F. Chen, Q. Shen, and L. M. Zhang, “Optimal design of light trapping in thin-film solar cells enhanced with graded SiNx and SiOxNy structure,” Opt. Express 20, 11121–11136 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited