OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 26 — Sep. 10, 2012
  • pp: 6282–6289

Distributed liquid level sensors using self-heated optical fibers for cryogenic liquid management

Tong Chen, Qingqing Wang, Rongzhang Chen, Botao Zhang, Yuankun Lin, and Kevin P. Chen  »View Author Affiliations

Applied Optics, Vol. 51, Issue 26, pp. 6282-6289 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (954 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a continuous liquid level sensing system for both room temperature and cryogenic fluids with millimeter spatial resolution. Change of in-fiber Rayleigh backscattering signal from the distinct thermal response of the heated sensing fiber in liquid and in air were interrogated and spatially resolved using the optical frequency domain reflectometry. Both electrical and optical heating techniques were investigated for cryogenic liquid applications at 4 K, 77 K, and the room temperature. The successful combination of self-heated fiber and wavelength-swept Rayleigh scattering interferometry provides, for the first time to our best knowledge, a truly distributed fuel gauge with high spatial resolution for cryogenic fuel storage, transportation, and management on ground and in space.

© 2012 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements
(120.6810) Instrumentation, measurement, and metrology : Thermal effects
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: May 10, 2012
Revised Manuscript: August 4, 2012
Manuscript Accepted: August 6, 2012
Published: September 5, 2012

Tong Chen, Qingqing Wang, Rongzhang Chen, Botao Zhang, Yuankun Lin, and Kevin P. Chen, "Distributed liquid level sensors using self-heated optical fibers for cryogenic liquid management," Appl. Opt. 51, 6282-6289 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Khahiq, S. W. James, and R. P. Tatam, “Fiber-optic liquid-level sensor using a long-period grating,” Opt. Lett. 26, 1224–1226 (2001). [CrossRef]
  2. B. Yun, N. Chen, and Y. Cui, “Highly sensitive liquid-level sensor based on etched fiber Bragg grating,” IEEE Photon. Technol. Lett. 19, 1747–1749 (2007). [CrossRef]
  3. S. M. Chandani and N. A. F. Jaeger, “Optical fiber-based liquid level sensor,” Opt. Eng. 46, 114401 (2007). [CrossRef]
  4. B. Dong, Q. Zhao, L. Feng, T. Guo, L. Xue, S. Dong, and H. Gu, “Liquid-level sensor with a high-birefringence-fiber loop mirror,” Appl. Opt. 45, 7767–7771 (2006). [CrossRef]
  5. J. E. Antonio-Lopez, J. J. Sanchez-Mondragon, P. LiKam Wa, and D. A. May-Arrioja, “Fiber-optic sensor for liquid level measurement,” Opt. Lett. 36, 3425–3427 (2011). [CrossRef]
  6. T. Chen, R. Chen, P. Lu, Q. Chen, and K. P. Chen, “Fiber Mach-Zehnder Interferometer for Liquid Level Sensing,” Electron. Lett. 47, 1093–1095 (2011). [CrossRef]
  7. T. Guo, Q. Zhao, Q. Dou, H. Zhang, L. Xue, G. Huang, and X. Dong, “Temperature-insensitive fiber Bragg grating liquid-level sensors based on bending cantilever beam,” IEEE Photon. Technol. Lett. 17, 2400–2402 (2005). [CrossRef]
  8. K. P. Chen, B. McMillan, and L. Cashdollar, “Self-heated fiber Bragg grating sensors,” Appl. Phys. Lett. 86, 143503 (2005). [CrossRef]
  9. T. Chen, D. Xu, M. Buric, M. Maklad, P. R. Swinhart, and K. P. Chen, “Self-heated all-fiber sensing system for cryogenic environments,” Meas. Sci. Technol. 21, 094036 (2010). [CrossRef]
  10. F. Yei, T. Chen, D. Xu, K. P. Chen, and L. Qian, “Cryogenic fluid level sensor multiplexed by frequency-shifted interferometry,” Appl. Opt. 49, 4898–4905 (2010). [CrossRef]
  11. T. Chen, M. Maklad, P. R. Swinhart, and K. P. Chen, “Self-heated optical fiber sensor array for cryogenic fluid level sensing,” IEEE Sens. J. 11, 1051–1052 (2011). [CrossRef]
  12. B. Soller, D. Gifford, M. Wolfe, and M. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express 13, 666–674 (2005). [CrossRef]
  13. S. T. Kreger, D. K. Gifford, M. E. Froggatt, B. J. Soller, and M. S. Wolfe, “High resolution distributed strain or temperature measurements in single- and multimode fiber using swept-wavelengh interferometry,” in Optical Fiber Sensors (Optical Society of America, 2006), paper ThE42.
  14. A. K. Sang, M. E. Froggatt, D. K. Gifford, S. T. Kreger, and B. D. Dickerson, “One centimeter spatial resolution temperature measurements in a nuclear reactor using Rayleigh scatter in optical fiber,” IEEE Sens. J. 8, 1375–1380 (2008). [CrossRef]
  15. T. Chen, Q. Wang, R. Chen, B. Zhang, C. Jewart, K. P. Chen, M. Maklad, and P. R. Swinehart, “Distributed high temperature pressure sensing using air-hole microstructural fibers,” Opt. Lett. 37, 1064–1066 (2012). [CrossRef]
  16. T. Chen, Q. Wang, R. Chen, B. Zhang, and K. P. Chen, “Distributed flow sensing using hot optical wire grids,” Opt. Express 20, 8240–8249 (2012). [CrossRef]
  17. T. Chen, Q. Wang, R. Chen, B. Zhang, K. P. Chen, M. Maklad, and P. R. Swinehart, “Distributed hydrogen sensing using in-fiber Rayleigh scattering,” Appl. Phys. Lett. 100, 191105 (2012). [CrossRef]
  18. S. Gao, A. P. Zhang, H-Y. Tam, L. H. Cho, and C. Lu, “All-optical fiber anemometer based on laser heated fiber Bragg gratings,” Opt. Express 19, 10124–10130 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited