OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 26 — Sep. 10, 2012
  • pp: 6295–6300

Slow-light element for tunable time delay based on optical microcoil resonator

Chengju Ma, Liyong Ren, and Yiping Xu  »View Author Affiliations


Applied Optics, Vol. 51, Issue 26, pp. 6295-6300 (2012)
http://dx.doi.org/10.1364/AO.51.006295


View Full Text Article

Enhanced HTML    Acrobat PDF (624 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a simple and compact slow-light element by use of an optical microcoil resonator (OMR) constituted by two microfiber coils. Based on the matrix exponential method, we solve the coupled-wave equations of the OMR with n turns of microfiber coils and obtain a general solution. Simulations indicate that a tunable slow-light propagation can be obtained by controlling the coupling coefficient between the two adjacent microfiber coils by means of regulating the voltage applied to the ferroelectric crystal. A slow-light time delay up to 62 ps with a bandwidth of 0.4 nm is performed at the wavelength around 1.5 μm.

© 2012 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2340) Fiber optics and optical communications : Fiber optics components
(230.3990) Optical devices : Micro-optical devices

ToC Category:
Optical Devices

History
Original Manuscript: June 19, 2012
Manuscript Accepted: August 8, 2012
Published: September 5, 2012

Citation
Chengju Ma, Liyong Ren, and Yiping Xu, "Slow-light element for tunable time delay based on optical microcoil resonator," Appl. Opt. 51, 6295-6300 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-26-6295


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003). [CrossRef]
  2. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001). [CrossRef]
  3. Y. A. Vlasov, M. O. Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005). [CrossRef]
  4. L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photon. 2, 474–481 (2008). [CrossRef]
  5. D. Dahan and G. Eisenstein, “Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering,” Opt. Express 13, 6234–6249 (2005). [CrossRef]
  6. L. Y. Ren and Y. Tomita, “Reducing group-velocity-dispersion-dependent broadening of stimulated Brillouin scattering slow light in an optical fiber by use of a single pump laser,” J. Opt. Soc. Am. B 25, 741–746 (2008). [CrossRef]
  7. S. H. Wang, L. Y. Ren, Y. Liu, and Y. Tomita, “Zero-broadening SBS slow light propagation in an optical fiber using two broadband pump beams,” Opt. Express 16, 8067–8076 (2008). [CrossRef]
  8. J. P. Zhang, G. Hernandez, and Y. F. Zhu, “Slow light with cavity electromagnetically induced transparency,” Opt. Lett. 33, 46–48 (2008). [CrossRef]
  9. P. Palinginis, F. Sedgwick, S. Crankshaw, M. Moewe, and C. J. Chang-Hasnain, “Room temperature slow light in a quantum-well waveguide via coherent population oscillation,” Opt. Express 13, 9909–9915 (2005). [CrossRef]
  10. L. Y. Ren and Y. Tomita, “Transient and nonlinear analysis of slow-light pulse propagation in an optical fiber via stimulated Brillouin scattering,” J. Opt. Soc. Am. B 26, 1281–1288 (2009). [CrossRef]
  11. S. Blair and K. Zheng, “Intensity-tunable group delay using stimulated Raman scattering in silicon slow-light waveguides,” Opt. Express 14, 1064–1069 (2006). [CrossRef]
  12. E. Shumakher, A. Willinger, R. Blit, D. Dahan, and G. Eisenstein, “Large tunable delay with low distortion of 10  Gbit/s data in a slow light system based on narrow band fiber parametric amplification,” Opt. Express 14, 8540–8545 (2006). [CrossRef]
  13. J. Mørk, R. Kjær, M. Poel, and K. Yvind, “Slow light in a semiconductor waveguide at gigahertz frequencies,” Opt. Express 13, 8136–8145 (2005). [CrossRef]
  14. A. Martinez, J. G. Provost, G. Aubin, R. Brenot, J. Landreau, F. Lelarge, and A. Ramdane, “Slow and fast light in quantum dot based semiconductor optical amplifiers,” C. R. Phys. 10, 1000–1007 (2009). [CrossRef]
  15. J. Liang, L. Y. Ren, M. J. Yun, X. Han, and X. J. Wang, “Wideband ultraflat slow light with large group index in a W1 photonic crystal waveguide,” J. Appl. Phys. 110, 063103 (2011). [CrossRef]
  16. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453–455 (1996). [CrossRef]
  17. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip,” Appl. Phys. Lett. 85, 6113–6115 (2004). [CrossRef]
  18. E. F. Burmeister, J. P. Mack, H. N. Poulsen, M. L. Mašanović, B. Stamenić, D. J. Blumenthal, and J. E. Bowers, “Photonic integrated circuit optical buffer for packet-switched networks,” Opt. Express 17, 6629–6635 (2009). [CrossRef]
  19. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003). [CrossRef]
  20. M. Sumetsky, “Optical fiber microcoil resonator,” Opt. Express 12, 2303–2316 (2004). [CrossRef]
  21. M. Sumetsky, “Uniform coil optical resonator and waveguide: transmission spectrum, eigenmodes, and dispersion relation,” Opt. Express 13, 4331–4340 (2005). [CrossRef]
  22. M. Sumetsky, “Optical microfiber coil delay line,” Opt. Express 17, 7196–7205 (2009). [CrossRef]
  23. N. G. R. Broderick, “Optical snakes and ladders: dispersion and nonlinearity in microcoil resonators,” Opt. Express 16, 16247–16254 (2008). [CrossRef]
  24. F. Xu and G. Brambilla, “Manufacture of 3-D microfiber coil resonators,” IEEE Photon. Technol. Lett. 19, 1481–1483 (2007). [CrossRef]
  25. Y. Jung, G. S. Murugan, G. Brambilla, and D. J. Richardson, “Embedded optical microfiber coil resonator with enhanced high-Q,” IEEE Photon. Technol. Lett. 22, 1638–1640 (2010). [CrossRef]
  26. F. Xu and G. Brambilla, “Embedding optical microfiber coil resonators in Teflon,” Opt. Lett. 32, 2164–2166 (2007). [CrossRef]
  27. F. Xu, P. Horak, and G. Brambilla, “Optical microfiber coil resonator refractometric sensor,” Opt. Express 15, 7888–7893(2007). [CrossRef]
  28. F. Xu, V. Pruneri, V. Finazzi, and G. Brambilla, “An embedded optical nanowire loop resonator refractometric sensor,” Opt. Express 16, 1062–1067 (2008). [CrossRef]
  29. X. L. Zhang, M. Belal, G. Y. Chen, Z. Q. Song, G. Brambilla, and T. P. Newson, “Compact optical microfiber phase modulator,” Opt. Lett. 37, 320–322 (2012). [CrossRef]
  30. S. Park and T. R. Shrout, “Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals,” J. Appl. Phys. 82, 1804–1811 (1997). [CrossRef]
  31. L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004). [CrossRef]
  32. G. H. Golub and C. F. Van Loan, Matrix Computations (Johns Hopkins University, 1996).
  33. E. Hairer, lecture notes on Solving Differential Equations on Manifolds, Université de Genève, Section de mathématiques, 2-4 rue du Lièvre, CP 64CH-1211 Genève 4, Switzerland, 2011.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited