OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 26 — Sep. 10, 2012
  • pp: 6335–6342

Optimized compressive sampling for passive millimeter-wave imaging

Leonidas Spinoulas, Jin Qi, Aggelos K. Katsaggelos, Thomas W. Elmer, Nachappa Gopalsami, and Apostolos C. Raptis  »View Author Affiliations


Applied Optics, Vol. 51, Issue 26, pp. 6335-6342 (2012)
http://dx.doi.org/10.1364/AO.51.006335


View Full Text Article

Enhanced HTML    Acrobat PDF (589 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we briefly describe a single detector passive millimeter-wave imaging system, which has been previously presented. The system uses a cyclic sensing matrix to acquire incoherent measurements of the observed scene and then reconstructs the image using a Bayesian approach. The cyclic nature of the sensing matrix allows for the design of a single unified and compact mask that provides all the required random masks in a convenient way, such that no mechanical mask exchange is needed. Based on this setup, we primarily propose the optimal adaptive selection of sampling submasks out of the full cyclic mask to obtain improved reconstruction results. The reconstructed images show the feasibility of the imaging system as well as its improved performance through the proposed sampling scheme.

© 2012 Optical Society of America

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(100.3190) Image processing : Inverse problems
(110.0110) Imaging systems : Imaging systems
(110.1085) Imaging systems : Adaptive imaging
(110.1758) Imaging systems : Computational imaging
(280.4991) Remote sensing and sensors : Passive remote sensing

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: June 29, 2012
Revised Manuscript: August 9, 2012
Manuscript Accepted: August 13, 2012
Published: September 7, 2012

Citation
Leonidas Spinoulas, Jin Qi, Aggelos K. Katsaggelos, Thomas W. Elmer, Nachappa Gopalsami, and Apostolos C. Raptis, "Optimized compressive sampling for passive millimeter-wave imaging," Appl. Opt. 51, 6335-6342 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-26-6335


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Yujiri, M. Shoucri, and P. Moffa, “Passive millimeter-wave imaging,” IEEE Microwave Mag. 4, 39–50 (2003).
  2. M. Attia, “Passive millimeter-wave imaging and potential applications in homeland security and aeronautics,” presented at Partners in Technology Forum, 21–22 April, 2005.
  3. O. Martinez, L. Ferraz, X. Binefa, I. Gomez, and C. Dorronsoro, “Concealed object detection and segmentation over millimetric waves images,” in Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (IEEE, 2010), pp. 31–37.
  4. M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008). [CrossRef]
  5. Y. Tsaig and D. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006). [CrossRef]
  6. E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006). [CrossRef]
  7. R. Fergus, A. Torralba, and W. T. Freeman, “Random lens imaging,” Tech. Rep. MIT CSAIL TR 2006-058 (Massachusetts Institute of Technology, 2006).
  8. L. McMackin, M. A. Herman, B. Chatterjee, and M. Weldon, “A high-resolution swir camera via compressed sensing,” Proc. SPIE 8353, 835303 (2012). [CrossRef]
  9. M. A. Neifeld and J. Ke, “Optical architectures for compressive imaging,” Appl. Opt. 46, 5293–5303 (2007). [CrossRef]
  10. C. F. Cull, D. A. Wikner, J. N. Mait, M. Mattheiss, and D. J. Brady, “Millimeter-wave compressive holography,” Appl. Opt. 49, E67–E82 (2010). [CrossRef]
  11. C. A. Fernandez, D. Brady, J. N. Mait, and D. A. Wikner, “Sparse Fourier sampling in millimeter-wave compressive holography,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2010), p. JMA14.
  12. I. Noor, O. Furxhi, and E. L. Jacobs, “Compressive sensing for a sub-millimeter-wave single pixel imager,” Proc. SPIE 8020, 8020K (2011).
  13. V. M. Patel and J. N. Mait, “Compressive passive millimeter wave imaging with extended depth of field,” Opt. Eng. 51, 091610 (2012). [CrossRef]
  14. S. Babacan, M. Luessi, L. Spinoulas, A. Katsaggelos, N. Gopalsami, T. Elmer, R. Ahern, S. Liao, and A. Raptis, “Compressive passive millimeter-wave imaging,” in 2011 IEEE International Conference on Image Processing (ICIP) (IEEE, 2011), pp. 2705–2708.
  15. N. Gopalsami, T. W. Elmer, S. Liao, R. Ahern, A. Heifetz, A. C. Raptis, M. Luessi, D. Babacan, and A. K. Katsaggelos, “Compressive sampling in passive millimeter-wave imaging,” Proc. SPIE 8022, 80220I (2011).
  16. W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, and R. G. Baraniuk, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93, 121105 (2008). [CrossRef]
  17. A. Heidari and D. Saeedkia, “A 2D camera design with a single-pixel detector,” in 34th International Conference on Infrared, Millimeter, and Terahertz Waves, 2009. IRMMW-THz 2009 (IEEE, 2009), pp. 1–2.
  18. M. Harwit and N. J. Sloane, Hadamard Transform Optics (Academic, 1979).
  19. E. E. Fenimore and T. M. Cannon, “Coded aperture imaging with uniformly redundant arrays,” Appl. Opt. 17, 337–347 (1978). [CrossRef]
  20. H. D. Lüke and A. Busboom, “Binary arrays with perfect odd-periodic autocorrelation,” Appl. Opt. 36, 6612–6619 (1997). [CrossRef]
  21. A. Busboom, H. EldersBoll, and H. D. Schotten, “Uniformly redundant arrays,” Experimental Astronomy 8, 97–123 (1998). [CrossRef]
  22. S. Babacan, R. Molina, and A. Katsaggelos, “Sparse Bayesian image restoration,” in 2010 17th IEEE International Conference on Image Processing (ICIP) (IEEE, 2010), pp. 3577–3580.
  23. M. E. Tipping, “Sparse Bayesian learning and the relevance vector machine,” J. Mach. Learning Res. 1, 211–244 (2001).
  24. G. Hennenfent and F. J. Herrmann, “Simply denoise: wavefield reconstruction via jittered undersampling,” Geophysics, 19–28 (2008).
  25. G. Tang, R. Shahidi, and J. Ma, “Design of two-dimensional randomized sampling schemes for curvelet-based sparsity-promoting seismic data recovery,” Tech. Rep. TR-2009-03 (UBC Earth and Ocean Sciences Department, 2009).
  26. S. Ji, Y. Xue, and L. Carin, “Bayesian compressive sensing,” IEEE Trans. Signal Process. 56, 2346–2356 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited