OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 26 — Sep. 10, 2012
  • pp: 6352–6360

Generation of microstripe cylindrical and toroidal mirrors by localized laser evaporation of fused silica

Krystian L. Wlodarczyk, Ian J. Thomson, Howard J. Baker, and Denis R. Hall  »View Author Affiliations


Applied Optics, Vol. 51, Issue 26, pp. 6352-6360 (2012)
http://dx.doi.org/10.1364/AO.51.006352


View Full Text Article

Enhanced HTML    Acrobat PDF (852 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report a new technique for the rapid fabrication of microstripe cylindrical and toroidal mirrors with a high ratio (>10) of the two principal radii of curvature (RoC1/RoC2), and demonstrate their effectiveness as mode-selecting resonator mirrors for high-power planar waveguide lasers. In this process, the larger radius of curvature (RoC1) is determined by the planar or cylindrical shape of the fused silica substrate selected for laser processing, whilst the other (RoC2) is produced by controlled CO2 laser-induced vaporization of the glass. The narrow stripe mirror aperture is achieved by applying a set of partially overlapped laser scans, with the incident laser power, the number of laser scans, and their spacing being used to control the curvature produced by laser evaporation. In this work, a 1 mm diameter laser spot is used to produce grooves of cylindrical/toroidal shape with 240 μm width and 16 mm length. After high reflectance coating, these grooves are found to provide excellent mode selectivity as resonator mirrors for a 150 μm core Yb:YAG planar waveguide laser, producing high brightness output at more than 300 W. The results show clearly that the laser-generated microstripe mirrors can improve the optical performance of high-power planar waveguide lasers when applied in a low-loss mode-selective resonator configuration.

© 2012 Optical Society of America

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(140.3410) Lasers and laser optics : Laser resonators
(160.6030) Materials : Silica
(230.7390) Optical devices : Waveguides, planar

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: April 24, 2012
Revised Manuscript: August 9, 2012
Manuscript Accepted: August 12, 2012
Published: September 7, 2012

Citation
Krystian L. Wlodarczyk, Ian J. Thomson, Howard J. Baker, and Denis R. Hall, "Generation of microstripe cylindrical and toroidal mirrors by localized laser evaporation of fused silica," Appl. Opt. 51, 6352-6360 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-26-6352


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. A. Temple, W. H. Lowdermilk, and D. Milam, “Carbon dioxide laser polishing of fused silica surfaces for increased laser-damage resistance at 1064 nm,” Appl. Opt. 21, 3249–3255 (1982). [CrossRef]
  2. A. Kuhn, P. French, D. P. Hand, I. J. Blewett, M. Richmond, and J. D. C. Jones, “Preparation of fiber optics for the delivery of high-energy high-beam-quality Nd: YAG laser pulses,” Appl. Opt. 39, 6136–6143 (2000). [CrossRef]
  3. R. M. Brusasco, B. M. Penetrante, J. A. Butler, S. M. Maricle, and J. E. Peterson, “CO2-laser polishing for reduction of 351 nm surface damage initiation in fused silica,” Proc. SPIE 4679, 34–39 (2001). [CrossRef]
  4. R. R. Prasad, J. R. Bruere, J. Peterson, J. M. Halpin, M. Borden, and R. P. Hackel, “Enhanced performance of large 3ω optics using UV and IR lasers,” Proc. SPIE 5273, 288–295 (2004). [CrossRef]
  5. K. M. Nowak, H. J. Baker, and D. R. Hall, “Efficient laser polishing of silica micro-optic components,” Appl. Opt. 45, 162–171 (2006). [CrossRef]
  6. E. Mendez, K. M. Nowak, H. J. Baker, F. J. Villarreal, and D. R. Hall, “Localized CO2 laser damage repair of fused silica optics,” Appl. Opt. 45, 5358–5367 (2006). [CrossRef]
  7. K. L. Wlodarczyk, E. Mendez, H. J. Baker, R. McBride, and D. R. Hall, “Laser smoothing of binary gratings and multilevel etched structures in fused silica,” Appl. Opt. 49, 1997–2005 (2010). [CrossRef]
  8. J. F. Monjardin, K. M. Nowak, H. J. Baker, and D. R. Hall, “Correction of beam errors in high power laser diode bars and stacks,” Opt. Express 14, 8178–8183 (2006). [CrossRef]
  9. N. Trela, H. J. Baker, J. J. Wendland, and D. R. Hall, “Dual-axis beam correction for an array of single-mode diode laser emitters using a laser-written custom phase-plate,” Opt. Express 17, 23576–23581 (2009). [CrossRef]
  10. S. Heidrich, E. Willenborg, and A. Richmann, “Development of a laser based process chain for manufacturing freeform optics,” Phys. Procedia 12, 519–528 (2011). [CrossRef]
  11. R. J. Barbour, P. A. Dalgarno, A. Curran, K. M. Nowak, H. J. Baker, D. R. Hall, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A tunable microcavity,” J. Appl. Phys. 110, 053107 (2011). [CrossRef]
  12. D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry–Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010). [CrossRef]
  13. C. Toninelli, Y. Delley, T. Stöferle, A. Renn, S. Götzinger, and V. Sandoghdar, “A scanning microcavity for in situ control of single-molecule emission,” Appl. Phys. Lett. 97, 021107 (2010). [CrossRef]
  14. I. J. Thomson, J. F. Monjardin, H. J. Baker, and D. R. Hall, “Efficient operation of a 400 W diode side-pumped Yb:YAG planar waveguide laser,” IEEE J. Quantum Electron. 47, 1336–1345 (2011). [CrossRef]
  15. A. D. McLachlan and F. P. Meyer, “Temperature dependence of the extinction coefficient of fused silica for CO2 laser wavelengths,” Appl. Opt. 26, 1728–1731 (1987). [CrossRef]
  16. K. L. Wlodarczyk, “Surface deformation mechanisms in laser smoothing and micro-machining of optical glasses,” Ph.D. dissertation (Heriot-Watt University, 2011).
  17. M. D. Feit, M. J. Matthews, T. F. Soules, J. S. Stolken, R. M. Vignes, S. T. Yang, and J. D. Cooke, “Densification and residual stress induced by CO2 laser-based mitigation of SiO2 surfaces,” Proc. SPIE 7842, 78420O (2010). [CrossRef]
  18. T. D. Bennett, D. J. Krajnovich, C. P. Grigoropoulos, P. Baumgart, and A. C. Tam, “Marangoni mechanism in pulsed laser texturing of magnetic disk substrates,” J. Heat Transfer 119, 589–596 (1997). [CrossRef]
  19. H. R. Philipp, “Silicon dioxide (SiO2) glass,” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1985), pp. 749–763.
  20. M. Von Allmen and A. Blatter, Laser-Beam Interactions with Materials: Physical Principles and Applications (Springer Verlag, 1995).
  21. J. J. Degnan and D. R. Hall, “Finite-aperture waveguide laser resonators,” IEEE J. Quantum Electron. 9, 901–910 (1973). [CrossRef]
  22. I. J. Thomson, K. L. Wlodarczyk, D. R. Hall, and H. J. Baker, “High brightness Yb:YAG planar waveguide laser with an unstable resonator formed with a novel laser-machined, toroidal mode-selective mirror,” in Advanced Solid-State Photonics, OSA Technical Digest (CD), (Optical Society of America, 2012), paper AW4A.19.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited