OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 26 — Sep. 10, 2012
  • pp: 6376–6381

Energy transportation in a subwavelength waveguide composed of a pair of comb-shape nanorod chains

Bing Shen, Yongqing Huang, Xiaofeng Duan, Xiaomin Ren, Xia Zhang, Qi Wang, and Dong Zhang  »View Author Affiliations


Applied Optics, Vol. 51, Issue 26, pp. 6376-6381 (2012)
http://dx.doi.org/10.1364/AO.51.006376


View Full Text Article

Enhanced HTML    Acrobat PDF (952 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A subwavelength plasmonic waveguide composed of a pair of comb-shape nanorod chains is proposed. The electromagnetic energy can be transported in the waveguide via the interaction strength of magnetoinductive coupling as well as conduction current exchange. Finite Element Method simulation results reveal that for such a waveguide composed of 50 pairs of 400 nm-long-nanorods, a passband ranging from zero to cutoff frequency 156.2 THz, and an effective propagation length of 20.87 μm can be achieved simultaneously. The proposed mechanism of energy transport in the nanoscale has potential applications in subwavelength transmission lines for a wide range of integrated optical devices.

© 2012 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optical Devices

History
Original Manuscript: June 4, 2012
Revised Manuscript: July 10, 2012
Manuscript Accepted: August 10, 2012
Published: September 10, 2012

Citation
Bing Shen, Yongqing Huang, Xiaofeng Duan, Xiaomin Ren, Xia Zhang, Qi Wang, and Dong Zhang, "Energy transportation in a subwavelength waveguide composed of a pair of comb-shape nanorod chains," Appl. Opt. 51, 6376-6381 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-26-6376


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333 (1998). [CrossRef]
  2. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356 (2000). [CrossRef]
  3. W. M. Saj, “FDTD simulations of 2D plasmon waveguide on silver nanorods in hexagonal lattice,” Opt. Express 13, 4818–4827 (2005). [CrossRef]
  4. J. Zhu, J. J. Li, and J. W. Zhao, “Tuning the wavelength drift between resonance light absorption and scattering of plasmonic nanoparticle,” Appl. Phys. Lett. 99, 101901 (2011). [CrossRef]
  5. F. M. Wang, H. Liu, T. Li, S. M. Wang, S. N. Zhu, J. Zhu, and W. Cao, “Highly confined energy propagation in a gap waveguide composed of two coupled nanorod chains,” Appl. Phys. Lett. 91, 133107 (2007). [CrossRef]
  6. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002). [CrossRef]
  7. T. Laroche and C. Girard, “Near-field optical properties of single plasmonic nanowires,” Appl. Phys. Lett. 89, 233119 (2006). [CrossRef]
  8. R. K. Harrison and A. Ben-Yakar, “Role of near-field enhancement in plasmonic laser nanoablation using gold nanorods on a silicon substrate,” Opt. Express 18, 22556–22571(2010). [CrossRef]
  9. H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, “Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance,” Phys. Rev. Lett. 107, 057402 (2011). [CrossRef]
  10. Q. H. Song and H. Cao, “Improving optical confinement in nanostructures via external mode coupling,” Phys. Rev. Lett. 105, 053902 (2010). [CrossRef]
  11. C. P. Huang, X. G. Yin, Q. J. Wang, H. Huang, and Y. Y. Zhu, “Long-wavelength optical properties of a plasmonic crystal,” Phys. Rev. Lett. 104, 016402 (2010). [CrossRef]
  12. C. Tserkezis, N. Papanikolaou, E. Almpanis, and N. Stefanou, “Tailoring plasmons with metallic nanorod arrays,” Phys. Rev. B 80, 125124 (2009). [CrossRef]
  13. Y. J. Zheng, H. Liu, S. M. Wang, T. Li, J. X. Cao, L. Li, C. Zhu, Y. Wang, S. N. Zhu, and X. Zhang, “Selective optical trapping based on strong plasmonic coupling between gold nanorods and slab,” Appl. Phys. Lett. 98, 083117 (2011). [CrossRef]
  14. G. A. Wurtz, W. Dickson, D. O’Connor, R. Atkinson, W. Hendren, P. Evans, R. Pollard, and A. V. Zayats, “Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime,” Opt. Express 16, 7460–7470 (2008). [CrossRef]
  15. H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97, 243902 (2006). [CrossRef]
  16. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999). [CrossRef]
  17. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  18. N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317, 1698–1702 (2007). [CrossRef]
  19. J. J. Wu, “Subwavelength microwave guiding by periodically corrugated strip line,” Prog. Electromagn. Res. 104, 113–123 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited