OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 26 — Sep. 10, 2012
  • pp: 6382–6388

Design of ultrahigh brightness solar-pumped disk laser

Dawei Liang and Joana Almeida  »View Author Affiliations


Applied Optics, Vol. 51, Issue 26, pp. 6382-6388 (2012)
http://dx.doi.org/10.1364/AO.51.006382


View Full Text Article

Enhanced HTML    Acrobat PDF (792 KB) | SpotlightSpotlight on Optics Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

To significantly improve the solar-pumped laser beam brightness, a multi-Fresnel lens scheme is proposed for side-pumping either a single-crystal Nd:YAG or a core-doped ceramic Sm3+ Nd:YAG disk. Optimum laser system parameters are found through ZEMAX and LASCAD numerical analysis. An ultrahigh laser beam figure of merit B of 53 W is numerically calculated, corresponding to a significant enhancement of more than 180 times over the previous record. 17.7W/m2 collection efficiency is also numerically attained. The strong thermal effects that have hampered present-day rod-type solar-pumped lasers can also be largely alleviated.

© 2012 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.3530) Lasers and laser optics : Lasers, neodymium
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.6810) Lasers and laser optics : Thermal effects
(350.6050) Other areas of optics : Solar energy

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: July 16, 2012
Revised Manuscript: August 17, 2012
Manuscript Accepted: August 17, 2012
Published: September 10, 2012

Virtual Issues
September 14, 2012 Spotlight on Optics

Citation
Dawei Liang and Joana Almeida, "Design of ultrahigh brightness solar-pumped disk laser," Appl. Opt. 51, 6382-6388 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-26-6382


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Graham-Rowe, “Solar-powered lasers,” Nat. Photonics 4, 64–65 (2010). [CrossRef]
  2. C. W. Young, “A sun-pumped cw one-watt laser,” Appl. Opt. 5, 993–997 (1966). [CrossRef]
  3. H. Arashi, Y. Oka, N. Sasahara, A. Kaimai, and M. Ishigame, “A solar-pumped cw 18 W Nd:YAG laser,” Jpn. J. Appl. Phys. 23, 1051–1053 (1984). [CrossRef]
  4. M. Weksler and J. Shwartz, “Solar-pumped solid-state lasers,” IEEE J. Quantum Electron. 24, 1222–1228 (1988). [CrossRef]
  5. V. Krupkin, J. A. Kagan, and A. Yogev, “Nonimaging optics and solar laser pumping at the Weizmann Institute,” Proc. SPIE 2016, 50–60 (1993). [CrossRef]
  6. M. Lando, J. Kagan, B. Linyekin, and V. Dobrusin, “A solar-pumped Nd:YAG laser in the high collection efficiency regime,” Opt. Commun. 222, 371–381 (2003). [CrossRef]
  7. T. Yabe, S. Uchida, K. Ikuta, K. Yoshida, C. Baasandash, M. S. Mohamed, Y. Sakurai, Y. Ogata, M. Tuji, Y. Mori, Y. Satoh, T. Ohkubo, M. Murahara, A. Ikesue, M. Nakatsuka, T. Saiki, S. Motokoshi, and C. Yamanaka, “Demonstrated fossil-fuel-free energy cycle using magnesium and laser,” Appl. Phys. Lett. 89, 261107 (2006). [CrossRef]
  8. T. Yabe, T. Ohkubo, S. Uchida, K. Yoshida, M. Nakatsuka, T. Funatsu, A. Mabuti, A. Oyama, K. Nakagawa, T. Oishi, K. Daito, B. Behgol, Y. Nakayama, M. Yoshida, S. Motokoshi, Y. Sato, and C. Baasandash, “High-efficiency and economical solar-energy-pumped laser with Fresnel lens and chromium co-doped laser medium,” Appl. Phys. Lett. 90, 261120(2007). [CrossRef]
  9. D. Liang and J. Almeida, “Highly efficient solar-pumped Nd:YAG laser,” Opt. Express 19, 26399–26405 (2011). [CrossRef]
  10. T. H. Dinh, T. Ohkubo, T. Yabe, and H. Kuboyama, “120 watt continuous wave solar-pumped laser with a liquid light-guide lens and a Nd:YAG rod,” Opt. Lett. 37, 2670–2672 (2012). [CrossRef]
  11. J. Almeida, D. Liang, and E. Guillot, “Improvement in solar-pumped Nd:YAG laser beam brightness,” Opt. Laser Technol. 44, 2115–2119 (2012). [CrossRef]
  12. M. Frede, R. Wilhelm, M. Brendel, C. Fallnich, F. Seifert, B. Willke, and K. Danzmann, “High power fundamental mode Nd:YAG laser with efficient birefringence compensation,” Opt. Express 12, 3581–3859 (2004). [CrossRef]
  13. W. Koechner, “Thermal lensing in Nd:YAG laser rod,” Appl. Opt. 9, 2548–2553 (1970). [CrossRef]
  14. A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994). [CrossRef]
  15. A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13, 598–609 (2007). [CrossRef]
  16. R. Pereira, B. Weichelt, D. Liang, P. Morais, H. Gouveia, M. Abdou-Ahmed, A. Voss, and T. Graf “Efficient pump beam shaping for high-power thin-disk laser systems,” Appl. Opt. 49, 5157–5162 (2010). [CrossRef]
  17. P. H. Bernardes and D. Liang, “Solid-state laser pumping by light-guides,” Appl. Opt. 45, 3811–3816 (2006). [CrossRef]
  18. ASTM Standard G159-98, “Standard Tables for References Solar Spectral Irradiance at Air Mass 1.5: Direct Normal and Hemispherical for a 37° Tilted Surface” (1998), withdrawn 2005, replaced with G173.
  19. Z. Bin, C. Zhao, J. He, and S. Yang, “The study of active medium for solar-pumped solid-state lasers,” Acta Opt. Sin. 27, 1797–1801 (2007).
  20. M. Ostermeyer and I. Brandenburg, “Simulation of the extraction of near diffraction limited Gaussian beams from side pumped core-doped ceramic Nd:YAG and conventional laser rods,” Opt. Express 13, 10145–10156 (2005). [CrossRef]
  21. A. Sträßer and M. Ostermeyer, “Improving the brightness of side pumped power amplifiers by using core-doped ceramic rods,” Opt. Express 14, 6687–6693 (2006). [CrossRef]
  22. H. Yagi, J. F. Bisson, K. Ueda, and T. Yanagitani, “Y3Al5O12 ceramic absorbers for the suppression of parasitic oscillation in high-power Nd:YAG lasers,” J. Lumin. 121, 88–94(2006). [CrossRef]
  23. R. Huß, R. Wilhelm, C. Kolleck, J. Neumann, and D. Kracht, “Suppression of parasitic oscillations in a core-doped ceramic Nd:YAG laser by Sm:YAG cladding,” Opt. Express 18, 13094–13101 (2010). [CrossRef]
  24. T. Denis, S. Hahn, S. Mebben, R. Wilhelm, C. Kolleck, J. Neumann, and D. Kracht, “Compact diode stack end pumped Nd:YAG amplifier using core doped ceramics,” Appl. Opt. 49, 811–816 (2010). [CrossRef]
  25. T. Brand, “Compact 170 W continuous-wave diode-pumped Nd:YAG rod laser with a cusp-shaped reflector,” Opt. Lett. 20, 1776–1778 (1995). [CrossRef]
  26. G. Zhou, D. Zhao, J. Xu, and S. Wang, “Semiconductor laser with beam quality factor M2<1,” Opt. Commun. 187, 395–399 (2001). [CrossRef]
  27. S. Wang, D. Zhao, Z. Lu, G. Zhou, F. Huang, and J. Xu, “Demonstration for optical beam qualities of quantum well lasers,” Opt. Commun. 194, 425–428 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited