OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 27 — Sep. 20, 2012
  • pp: 6484–6488

Positively and negatively large Goos–Hänchen lateral displacements from a single negative layered structure

Robabeh Talebzadeh and Abdolrahman Namdar  »View Author Affiliations

Applied Optics, Vol. 51, Issue 27, pp. 6484-6488 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (576 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the electromagnetic beam reflection from layered structures that include the so-called ε-negative and the μ-negative materials, also called single negative materials. We predict that such structures can demonstrate a giant lateral Goos–Hänchen shift of the resonant excitation of surface waves at the interface between the conventional and single negative materials, as well as due to the excitation of leaky modes in the layered structures. Then we replace the conventional layer with a left-handed layer (a material with both ε<0 and μ<0). We show that the Goos-Hänchen shift can be positive and negative depending on the type of this layer (conventional or LH material), which can support TE or TM surface waves.

© 2012 Optical Society of America

OCIS Codes
(160.3918) Materials : Metamaterials
(160.5298) Materials : Photonic crystals

ToC Category:

Original Manuscript: July 26, 2012
Manuscript Accepted: August 8, 2012
Published: September 12, 2012

Robabeh Talebzadeh and Abdolrahman Namdar, "Positively and negatively large Goos–Hänchen lateral displacements from a single negative layered structure," Appl. Opt. 51, 6484-6488 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Goos and H. Hänchen, “Ein neuer und fundamentaler versuch zur totalreflexion,” Ann. Phys. 436, 333–346 (1947). [CrossRef]
  2. L. G. Wang, H. Chen, and S. Y. Zhu, “Large negative Goos-Hänchen shift from a weakly absorbing dielectric slab,” Opt. Lett. 30, 2936–2938 (2005). [CrossRef]
  3. X. Chen, M. Sheng, Z. F. Zhang, and C. F. Li, “Tunable lateral shift and polarization beam splitting of the transmitted light beam through electro-optic crystals,” Appl. Phys. 104, 123101 (2008). [CrossRef]
  4. L. G. Wang and S. Y. Zhu, “Giant lateral shift of a light beam at the defect mode in one-dimensional photonic crystals,” Opt. Lett. 31, 101–103 (2006). [CrossRef]
  5. X. B. Yin and L. Hesselink, “Goos-Hänchen shift surface plasmon resonance sensor,” Appl. Phys. Lett. 89, 261108 (2006). [CrossRef]
  6. Y. Wang, H. Li, Z. Cao, T. Yu, Q. Shen, and Y. He, “Oscillating wave sensor based on the Goos-Hänchen effect,” Appl. Phys. Lett. 92, 061117 (2008). [CrossRef]
  7. C. W. Chen, W. C. Lin, L. S. Liao, Z. H. Lin, H. P. Chiang, P. T. Leung, E. Sijercic, and W. S. Tse, “Optical temperature sensing based on the Goos-Hänchen effect,” Appl. Opt. 46, 5347–5351 (2007). [CrossRef]
  8. T. Sakata, H. Togo, and F. Shimokawa, “Reflection-type 2×2 optical waveguide switch using the Goos–Hänchen shift effect,” Appl. Phys. Lett. 76, 2841–2843 (2000). [CrossRef]
  9. V. Shadrivov, A. A. Zharov, and Y. S. Kivshar, “Giant Goos-Hänchen effect at the reflection from left-handed metamaterials,” Appl. Phys. Lett. 83, 2713–2715 (2003). [CrossRef]
  10. P. Yeh, A. Yariv, and C. S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67, 423–438 (1977). [CrossRef]
  11. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).
  12. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996). [CrossRef]
  13. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001). [CrossRef]
  14. R. Ruppin, “Surface polaritons of a left-handed medium,” Phys. Lett. A 277, 61–64 (2000). [CrossRef]
  15. I. V. Shadrivov, A. A. Sukhorukov, Y. S. Kivshar, A. A. Zharov, A. D. Boardman, and P. Egan, “Nonlinear surface waves in left-handed materials,” Phys. Rev. E 69, 16617–16619 (2004). [CrossRef]
  16. H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, J. Zi, and S. Y. Zhu, “Properties of one-dimensional photonic crystals containing single-negative materials,” Phys. Rev. E 69, 066607 (2004). [CrossRef]
  17. H. Daninthe, S. Foteinopoulou, and C. M. Soukoulis, “Omnireflectance and enhanced resonant tunneling from multilayers containing left-handed materials,” Photon. Nanostr. Fundam. Appl. 4, 123–131 (2006). [CrossRef]
  18. J. Li, L. Zhou, C. T. Chan, and P. Sheng, “Photonic band gap from a stack of positive and negative index materials,” Phys. Rev. Lett. 90, 083901 (2003). [CrossRef]
  19. L. G. Wang, H. Chen, and S. Y. Zhu, “Omnidirectional gap and defect mode of one-dimensional photonic crystals with singlenegative materials,” Phys. Rev. B 70, 245102 (2004). [CrossRef]
  20. R. Srivastava, S. Pati, and S. P. Ojha, “Enhancement of nomnidirectional reflection in photonic crystal hetrostructures,” Prog. Electromagnet. Res. B 1, 197–208 (2008).
  21. S. K. Srivastava and S. P. Ojha, “Enhancement of omnidirectional reflection bands in one-dimentional photonic crystals with left-handed materials,” Prog. Electromagn. Res. 68, 91–111 (2007). [CrossRef]
  22. D. R. Fredkin and A. Ron, “Effectively left-handed (negative index) composite material,” Appl. Phys. Lett. 81, 1753–1755 (2002). [CrossRef]
  23. G. V. Morozov, D. W. L. Sprung, and J. Martorell, “Semiclassical coupled-wave theory and its application to TE waves in onedimensional photonic crystals,” Phys. Rev. E 69, 016612 (2004). [CrossRef]
  24. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).
  25. J. Martorell, D. W. L. Sprung, and G. V. Morozov, “Surface TE waves on 1D photonic crystals,” J. Opt. A: Pure Appl. Opt. 8, 630–638 (2006). [CrossRef]
  26. M. Miri, A. Naqavi, A. Khavasi, K. Mehrany, S. Khorasani, and B. Rashidian, “Geometrical approach in physical understanding of the Goos-Hänchen shift in one- and two-dimensional periodic structures,” Opt. Lett. 33, 2940–2942 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited