OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 27 — Sep. 20, 2012
  • pp: 6489–6497

Design of optically path-length-matched, three-dimensional photonic circuits comprising uniquely routed waveguides

Ned Charles, Nemanja Jovanovic, Simon Gross, Paul Stewart, Barnaby Norris, John O’Byrne, Jon S. Lawrence, Michael J. Withford, and Peter G. Tuthill  »View Author Affiliations

Applied Optics, Vol. 51, Issue 27, pp. 6489-6497 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1074 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A method for designing physically path-length-matched, three-dimensional photonic circuits is described. We focus specifically on the case in which all the waveguides are uniquely routed from the input to output—a problem that has not been addressed to date and that allows for the waveguides to be used in interferometric measurements. Circuit elements were fabricated via the femtosecond laser direct-write technique. We demonstrate via interferometric methods that the fabricated circuits were indeed optically path-length matched to within 45  μm, which is within the coherence length required for many applications.

© 2012 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(220.2740) Optical design and fabrication : Geometric optical design
(230.7370) Optical devices : Waveguides
(320.7160) Ultrafast optics : Ultrafast technology
(110.3175) Imaging systems : Interferometric imaging

ToC Category:
Optical Devices

Original Manuscript: June 5, 2012
Revised Manuscript: August 5, 2012
Manuscript Accepted: August 13, 2012
Published: September 12, 2012

Ned Charles, Nemanja Jovanovic, Simon Gross, Paul Stewart, Barnaby Norris, John O’Byrne, Jon S. Lawrence, Michael J. Withford, and Peter G. Tuthill, "Design of optically path-length-matched, three-dimensional photonic circuits comprising uniquely routed waveguides," Appl. Opt. 51, 6489-6497 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008). [CrossRef]
  2. V. Coudé du Foresto and S. Ridgway, “FLUOR: a stellar interferometer using single-mode infrared fibers,” in ESO Conference on High-Resolution Imaging by Interferometry II, J. Beckers and F. Merkle, eds. (1991), pp. 731–740.
  3. V. Coudé du Foresto, “Fringe benefits: the spatial filtering advantages of single-mode fibers,” in Integrated Optics for Astronomical Interferometry, P. Kern and F. Malbet, eds. (Bastianelli-Guirimand, 1997), pp. 27–30.
  4. M. Benisty, J.-P. Berger, L. Jocou, P. Labeye, F. Malbet, K. Perraut, and P. Kernet, “An integrated optics beam combiner for the second generation VLTI instruments,” Astron. Astrophys. 498, 601–613 (2009). [CrossRef]
  5. L. Labadie, G. Martín, N. C. Anheier, B. Arezki, H. A. Qiao, B. Bernacki, and P. Kern, “First fringes with an integrated-optics beam combiner at 10 μm. A new step towards instrument miniaturization for mid-infrared interferometry,” Astron. Astrophys. 531, A48 (2011). [CrossRef]
  6. A. Ródenas, G. Martin, B. Arezki, N. Psaila, G. Jose, A. Jha, L. Labadie, P. Kern, A. Kar, and R. Thomson, “Three-dimensional mid-infrared photonic circuits in chalcogenide glass,” Opt. Lett. 37, 392–394 (2012). [CrossRef]
  7. J. P. Berger, P. Haguenauer, P. Kern, K. Perraut, F. Malbet, I. Schanen, M. Severi, R. Millan-Gabet, and W. Traub, “Integrated optics for astronomical interferometry IV: first measurements of stars,” Astron. Astrophys. 376, L31–L34(2001). [CrossRef]
  8. G. Perrin, S. Lacour, J. Woillez, and E. J. Thiebaut, “High dynamic range imaging by pupil single-mode filtering and remapping,” Mon. Not. R. Astron. Soc. 373, 747–751 (2006). [CrossRef]
  9. P. Tuthill, N. Jovanovic, S. Lacour, A. Lehmann, M. Ams, G. Marshall, J. Lawrence, M. Withford, G. Robertson, M. Ireland, B. Pope, and P. Stewart, “Photonic technologies for a pupil remapping interferometer,” Proc. SPIE 7734, 77341P (2010). [CrossRef]
  10. H. Gu and J. Xu, “Design of 3D optical network on chip,” in Proceedings of International Symposium on Photonics and Optoelectronics (SOPO, 2009), pp. 771–774.
  11. A. Gruen and D. Akca, “Least squares 3D surface and curve matching,” ISPRS J. Photogramm. Remote Sens. 59, 151–174 (2005). [CrossRef]
  12. M. Cui, J. Femiani, J. Hu, P. Wonka, and A. Razdan, “Curve matching for open 2D curves,” Pattern Recogn. Lett. 30, 1–10(2009). [CrossRef]
  13. Y. Zhao and Y. Q. Chen, “Connected equi-length line segments for curve and structure matching,” in Proceedings of IJPRAI (World Scientific, 2004), pp. 1019–1037.
  14. J. Kiusalaas, Numerical Methods in Engineering with Python (Cambridge University, 2005).
  15. J. H. Mathews and K. D. Fink, Numerical Methods Using MATLAB, 4th ed. (Prentice Hall, 2003).
  16. S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003). [CrossRef]
  17. A. Jesacher, G. D. Marshall, T. Wilson, and M. J. Booth, “Adaptive optics for direct laser writing with plasma emission aberration sensing,” Opt. Express 18, 656–661 (2010). [CrossRef]
  18. C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98, 013517 (2005). [CrossRef]
  19. A. W. Snyder and J. D. Love, Optical Waveguide Theory(Chapman and Hall, 1983).
  20. “RSoft, BeamPROP, & FemSIM,” http://www.rsoftdesign.com .
  21. S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W.-J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16, 9443–9458 (2008). [CrossRef]
  22. B. E. A. Saleh and M. C. Teich, “Absorption and dispersion,” in Fundamentals of Photonics, 2nd ed. (Wiley, 2007), pp. 170–183.
  23. N. Jovanovic, I. Spaleniak, S. Gross, M. Ireland, J. Lawrence, C. Miese, A. Fuerbach, and M. Withford, “Integrated photonic building blocks for next-generation astronomical instrumentation: the multimode waveguide,” Opt. Express 20, 17029–17043 (2012). [CrossRef]
  24. B. Norris, N. Jovanovic, P. G. Tuthill, S. Lacour, S. Gross, M. Ams, P. Stewart, J. Lawrence, N. Charles, G. Marshall, G. Robertson, M. Ireland, and M. Withford, “Challenges in photonic pupil remapping for optical stellar interferometry,” in Proceedings of the International Quantum Electronics Conference and Conference on Lasers and Electro-Optics Pacific Rim 2011 (Optical Society of America, 2011), paper C1114.
  25. N. Jovanovic, P. G. Tuthill, B. Norris, S. Gross, P. Stewart, N. Charles, S. Lacour, M. Ams, J. Lawrence, A. Lehmann, C. Niel, G. D. Marshall, G. Robertson, M. Ireland, A. Fuerbach, and M. J. Withford, “Starlight demonstration of an integrated pupil remapping interferometer: a new technology for high contrast exoplanetary imaging,” Mon. Not. R. Astron. Soc. (to be published).
  26. N. Jovanovic, B. Norris, S. Gross, P. Stewart, N. Charles, M. Ams, J. Lawrence, S. Lacour, G. Marshall, G. Robertson, M. Ireland, M. Withford, and P. G. Tuthill, “First stellar photons through an integrated photonic pupil remapping interferometer,” in Proceedings of the International Quantum Electronics Conference and Conference on Lasers and Electro-Optics Pacific Rim 2011 (Optical Society of America, 2011), paper C1212.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited