OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 27 — Sep. 20, 2012
  • pp: 6498–6507

Effect of postdeposition annealing on the structure, composition, and the mechanical and optical characteristics of niobium and tantalum oxide films

Eda Çetinörgü-Goldenberg, Jolanta-Ewa Klemberg-Sapieha, and Ludvik Martinu  »View Author Affiliations


Applied Optics, Vol. 51, Issue 27, pp. 6498-6507 (2012)
http://dx.doi.org/10.1364/AO.51.006498


View Full Text Article

Enhanced HTML    Acrobat PDF (964 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical, mechanical, and thermal properties of optical thin films are very important for a reliable device performance. In the present work, the effect of annealing on the stability and the characteristics of niobium and tantalum oxide films grown at room temperature (RT) by dual ion beam sputtering were studied. The refractive index (n(λ)), extinction coefficient (k(λ)), hardness (H), reduced Young’s modulus (Er), and film stress (σ) were investigated as a function of the annealing temperature (TA). X-ray diffraction analysis showed that all as-deposited films were amorphous, and crystallization was observed only after annealing at 700°C. Compositional analyses confirmed that the atomic ratio of oxygen to metal in as-deposited and annealed films was close to 2.5, indicating that the films were stoichiometric pentoxides of Nb and Ta. The properties of Nb2O5 and Ta2O5 films were, respectively, affected by postdeposition annealing: n(λ) values (at 550 nm) decreased from 2.30 to 2.20 and from 2.14 to 2.08, the average H and Er values increased from 5.6 to 7.4 GPa, and from 121 to 132 GPa for Nb2O5, and from 6.5 to 8.3 GPa, and from 132 to 144 GPa for Ta2O5, and the initial low compressive stress for both materials changed to tensile. We explain the variation of the coating material properties in terms of film stoichiometry, crystallinity, electronic structure, and possible reactions at the film–substrate interface.

© 2012 Optical Society of America

OCIS Codes
(310.1860) Thin films : Deposition and fabrication
(310.3840) Thin films : Materials and process characterization
(310.6860) Thin films : Thin films, optical properties
(310.6870) Thin films : Thin films, other properties

ToC Category:
Thin Films

History
Original Manuscript: July 25, 2012
Revised Manuscript: July 30, 2012
Manuscript Accepted: July 31, 2012
Published: September 13, 2012

Citation
Eda Çetinörgü-Goldenberg, Jolanta-Ewa Klemberg-Sapieha, and Ludvik Martinu, "Effect of postdeposition annealing on the structure, composition, and the mechanical and optical characteristics of niobium and tantalum oxide films," Appl. Opt. 51, 6498-6507 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-27-6498


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Kukli, M. Ritala, and M. Leskela, “Development of dielectric properties of niobium oxide, tantalum oxide, and aluminum oxide based nanolayered materials,” J. Electrochem. Soc. 148, F35–F41 (2001). [CrossRef]
  2. J. Lin, N. Masaaki, A. Tsukune, and M. Yamada, “Ta2O5 thin films with exceptionally high dielectric constant,” Appl. Phys. Lett. 74, 2370–2372 (1999).
  3. C. Chaneliere, J. L. Autran, R. A. B. Devine, and B. Balland, “Tantalum pentaoxide (Ta2O5) thin films for advanced dielectric applications,” Mater. Sci. Eng., Rep. 22, 269–322 (1998). [CrossRef]
  4. F. Lai, M. Li, H. Wang, H. Hu, X. Wang, J. G. Hou, Y. Song, and Y. Jiang, “Optical scattering characteristics of annealed niobium oxide films,” Thin Solid Films 488, 314–320 (2005). [CrossRef]
  5. F. Lai, L. Lin, Z. Huang, R. Gai, and Y. Qu, “Effect of thickness on the structure, morphology, and optical properties of sputter deposited Nb2O5 films,” Appl. Surf. Sci. 253, 1801–1805 (2006). [CrossRef]
  6. S. Gnanarajan and S. K. H. Lam, “Evaluation of epitaxial Ta2O5 and Ta2O films during thermal oxidation of epitaxial tantalum films on sapphire substrates,” J. Vac. Sci. Technol. A 26, 494–497 (2008). [CrossRef]
  7. S. Venkataraj, R. Drese, O. Kappertz, R. Jayavel, and M. Wutting, “Characterization of niobium oxide films prepared by reactive dc magnetron sputtering,” Phys. Status Solidi A 188, 1047–1058 (2001). [CrossRef]
  8. B. Hunsche, M. Vergöhl, H. Neuhauser, F. Klose, B. Szyszka, and T. Matthee, “Effect of deposition parameters on optical and mechanical properties of MF- and DC-sputtered Nb2O5 films,” Thin Solid Films 392, 184–190 (2001). [CrossRef]
  9. C. L. Tien, C. C. Jaing, C. C. Lee, and K. P. Chuang, “Simultaneous determination of the thermal expansion coefficient and the elastic modulus of Ta2O5 thin film using phase shifting interferometry,” J. Mod. Opt. 47, 1681–1691 (2000).
  10. C. C. Lee, J. C. Hsu, and D. H. Wong, “The characteristics of some metallic oxides prepared in high vacuum by ion beam sputtering,” Appl. Surf. Sci. 171, 151–156 (2001). [CrossRef]
  11. C. C. Lee, J. C. Hsu, and D. H. Wong, “Low loss niobium oxide films deposited by ion beam sputter deposition,” Opt. Quantum Electron. 32, 327–337 (2000). [CrossRef]
  12. K. Kukli, M. Ritala, M. Leskela, and R. Lappalainen, “Niobium oxide thin films grown by atomic layer epitaxy,” Chem. Vapor Depos. 4, 29–34 (1998). [CrossRef]
  13. R. Chandrasekharan, I. Park, R. I. Masel, and M. A. Shannon, “Thermal oxidation of tantalum films at various oxidation states from 300 to 700 °C,” J. Appl. Phys. 98, 114908 (2005). [CrossRef]
  14. J. Y. Zhang, B. Lim, and I. W. Boyd, “Thin tantalum pentaoxide films deposited by photo-induced CVD,” Thin Solid Films 336, 340–343 (1998). [CrossRef]
  15. J. P. Masse, H. Szymanowski, O. Zabeida, A. Amassian, J. E. Klemberg-Sapieha, and L. Martinu, “Stability and effect of annealing on the optical properties of plasma deposited Ta2O5 and Nb2O5 films,” Thin Solid Films 515, 1674–1682 (2006). [CrossRef]
  16. H. Szymanowski, O. Zabeida, J. E. Klemberg-Sapieha, and L. Martinu, “Optical properties and microstructure of plasma deposited Ta2O5 and Nb2O5 films,” J. Vac. Sci. Technol. A 23, 241–247 (2005). [CrossRef]
  17. S. H. Mujawar, A. L. Inamdar, S. B. Patil, and P. S. Patil, “Electrochromic properties of spray-deposited niobium oxide thin films,” Solid State Ionics 177, 3333–3338 (2006). [CrossRef]
  18. A. Pawlicka, M. Atik, and M. A. Aegerter, “Synthesis of multicolor Nb2O5 coatings for electrochromic devices,” Thin Solid Films 301, 236–241 (1997). [CrossRef]
  19. P. J. Martin, H. A. Macleod, R. P. Netterfield, C. G. Pacey, and W. G. Sainty, “Ion-beam-assisted deposition of thin films,” Appl. Opt. 22, 178–184 (1983). [CrossRef]
  20. L. Martinu and D. Poitras, “Plasma deposition of optical films and coatings: A review,” J. Vac. Sci. Technol. A 18, 2619–2645 (2000). [CrossRef]
  21. I. Petrov, P. B. Barna, L. Hultman, and J. E. Greene, “Microstructural evaluation during film growth,” J. Vac. Sci. Technol. A 21, S117–S128 (2003). [CrossRef]
  22. B. Baloukas and L. Martinu, “Metameric interference security image structures,” Appl. Opt. 47, 1585–1593 (2008). [CrossRef]
  23. J. J. Cuomo, S. M. Rossnagel, and H. R. Kaufman, Handbook of Ion Beam Processing Technology Part III (Noyes, 1989), pp. 170.
  24. P. J. Martin, “Ion-based methods for optical thin film deposition,” J. Mater. Sci. 21, 1–25 (1986). [CrossRef]
  25. H. Choosuwan, R. Guo, and A. S. Bhalla, “Negative thermal expansion behavior in single crystal and ceramic of Nb2O5-based compositions,” J. Appl. Phys. 91, 5051–5054 (2002). [CrossRef]
  26. S. Venkataraj, R. Drese, Ch. Liesch, O. Kappertz, R. Jayavel, and M. Wutting, “Thermal stability of sputtered niobium oxide films,” J. Appl. Phys. 91, 4863–4871 (2002). [CrossRef]
  27. C. C. Lee, J. C. Hsu, D. T. Wei, and J. H. Lin, “Morphology of dual ion beam sputtered films investigated by atomic force microscopy,” Thin Solid Films 308–309, 74–78 (1997). [CrossRef]
  28. S. Maeng, L. Axe, T. Tyson, and A. Jiang, “An investigation of structures of thermal and anodic tantalum oxide films,” J. Electrochem. Soc. 152, B60–B64 (2005). [CrossRef]
  29. F. U. Naab, O. W. Holland, J. L. Duggan, and F. D. McDaniel, “Ion beam analyses of carbon nanotubes,” J. Phys. Chem. B 109, 1415–1419 (2005). [CrossRef]
  30. G. Boudreault, R. G. Elliman, R. Grötzschel, S. C. Gujrathi, C. Jeynes, W. N. Lennard, E. Rauhala, T. Sajavaara, H. Timmers, Y. Q. Wang, and T. D. M. Weijers, “Round Robin: measurement of H implantation distributions in Si by elastic recoil detection,” Nucl. Instrum. Methods Phys. Res. B 222, 547–566 (2004). [CrossRef]
  31. B. D. Cullity and S. R. Stock, Elements of X-ray Diffraction, 3rd ed. (Prentice-Hall, 2001), pp. 170, 619.
  32. G. E. Jellison and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69, 371–373 (1996). [CrossRef]
  33. W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res. 7, 1564–1583 (1992). [CrossRef]
  34. J. E. Klemberg-Sapieha, J. Oberste-Berghaus, L. Martinu, R. Blacker, I. Stevenson, G. Sadkhin, D. Morton, S. McEldowney, R. Klinger, P. J. Martin, N. Court, S. Dligatch, M. Gross, and R. P. Netterfield, “Mechanical characteristics of optical coatings prepared by various techniques: a comparative study,” Appl. Opt. 43, 2670–2679 (2004). [CrossRef]
  35. C. C. Lee, C. L. Tien, W. S. Sheu, and C. C. Jaing, “An apparatus for the measurement of internal stress and thermal expansion coefficient of metal oxide films,” Rev. Sci. Instrum. 72, 2128–2133 (2001). [CrossRef]
  36. Y. Okada and Y. Tokumaru, “Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K,” J. Appl. Phys. 56, 314–320 (1984). [CrossRef]
  37. E. Çetinörgü, B. Baloukas, O. Zabeida, J. E. Klemberg-Sapieha, and L. Martinu, “Mechanical and thermo-elastic characteristics of optical thin films deposited by dual ion beam sputtering,” Appl. Opt. 48, 4536–4544 (2009). [CrossRef]
  38. D. R. Lide, ed. “Physical constants of inorganic compounds,” in CRC Handbook of Chemistry and Physics, 88th ed. (CRC Press, 2007–2008), Section 4.
  39. B. M. Gatehouse and A. D. Wadsley, “The crystal structure of the high temperature form of niobium pentaoxide,” Acta Crystallogr. 17, 1545–1554 (1964). [CrossRef]
  40. International Centre for Diffraction Data, 07-0061, 15-0243, 18-1304, 19-0859, 19-1298, PCPDFWIN (Version 2.02).
  41. S. V. Jagadeesh Chandra, G. Mohan Rao, and S. Uthanna, “Heat treatment induced structural and optical properties of rf magnetron sputtered tantalum oxide films,” Cryst. Res. Technol. 42, 290–294 (2007). [CrossRef]
  42. B. Orel, M. Macek, and J. Grdadolnik, “In situ UV-VIS and ex-situ IR spectro electrochemical investigations of amorphous and crystalline electrochromic Nb2O5 films in charged/discharged states,” J. Solid State Electrochem. 2, 221–236 (1998). [CrossRef]
  43. H. Ono and K. Koyanagi, “Infrared absorption peak due to Ta═O bonds in Ta2O5 thin films,” Appl. Phys. Lett. 77, 1431–1433 (2000). [CrossRef]
  44. G. He, Q. Fang, M. Liu, L. Q. Zhu, and L. D. Zhang, “The structural and interfacial properties of HfO2/Si by the plasma oxidation of sputtered metallic Hf thin films,” J. Cryst. Growth 268, 155–162 (2004). [CrossRef]
  45. H. Kupfer, T. Flügel, F. Richter, and P. Schlott, “Intrinsic stress in dielectric thin films for micromechanical components,” Surf. Coat. Technol. 116–119, 116–120 (1999). [CrossRef]
  46. C. L. Tien and C. C. Lee, “Effects of ion energy on internal stress and optical properties of ion beam sputtering Ta2O5 films,” J. Mod. Opt. 50, 2755–2763 (2003).
  47. C. L. Tien, C. C. Lee, Y. L. Tsai, and W. S. Sun, “Determination of the mechanical properties of thin films by digital phase shifting interferometry,” Opt. Commun. 198, 325–331 (2001). [CrossRef]
  48. M. Cevro and G. Carter, “Ion beam and dual ion beam sputter deposition of tantalum oxide films,” Opt. Eng. 34, 596–606 (1995). [CrossRef]
  49. C. A. Davis, “A simple model for the formation of compressive stress in thin films by ion bombardment,” Thin Solid Films 226, 30–34 (1993). [CrossRef]
  50. G. Carter, “Peening in ion-assisted thin film deposition-a generalized model,” J. Phys. D 27, 1046–1055 (1994). [CrossRef]
  51. C. C. Fang, F. Jones, and V. Prasada, “Effect of gas impurity and ion bombardment on stresses in sputter-deposited thin films: a molecular-dynamics approach,” J. Appl. Phys. 74, 4472–4482 (1993). [CrossRef]
  52. D. S. Gardner and P. A. Flinn, “Mechanical stress as a function of temperature in aluminum films,” IEEE Trans. Electron Devices 35, 2160–2169 (1988). [CrossRef]
  53. P. A. Flinn, D. S. Gardner, and W. D. Nix, “Measurement and interpretation of stress in aluminum-based metallization as a function of thermal history,” IEEE Trans. Electron Devices 34, 689–699 (1987). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited