OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 27 — Sep. 20, 2012
  • pp: 6508–6517

Influence of the tilting reflection mirror on the temperature and wind velocity retrieved by a polarizing atmospheric Michelson interferometer

Chunmin Zhang and Ying Li  »View Author Affiliations


Applied Optics, Vol. 51, Issue 27, pp. 6508-6517 (2012)
http://dx.doi.org/10.1364/AO.51.006508


View Full Text Article

Enhanced HTML    Acrobat PDF (1286 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The principles of a polarizing atmospheric Michelson interferometer are outlined. The tilt of its reflection mirror results in deflection of the reflected beam and affects the intensities of the observed inteferogram. This effect is systematically analyzed. Both rectangular and circular apertures are considered. The theoretical expression of the modulation depth and phase of the interferogram are derived. These parameters vary with the inclination angle of the mirror and the distance between the deflection center and the optical axis and significantly influence the retrieved temperature and wind speed. If the wind and temperature errors are required to be less than 3m/s and 5 K, the deflection angle must be less than 0.5°. The errors are also dependent on the shape of aperture. If the reflection mirror is deflected in one direction, the temperature error is smaller for a circular aperture (1.3 K) than for a rectangular one (2.6 K), but the wind velocity errors are almost the same (less than 3m/s). If the deflection center and incident light beam are coincident, the temperature errors are 3×104K and 0.45 K for circular and rectangular apertures, respectively. The wind velocity errors are 1.2×103m/s and 0.06m/s. Both are small. The result would be helpful for theoretical research and development of the static polarization wind imaging interferometer.

© 2012 Optical Society of America

OCIS Codes
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:
Optical Devices

History
Original Manuscript: June 4, 2012
Revised Manuscript: August 11, 2012
Manuscript Accepted: August 11, 2012
Published: September 13, 2012

Citation
Chunmin Zhang and Ying Li, "Influence of the tilting reflection mirror on the temperature and wind velocity retrieved by a polarizing atmospheric Michelson interferometer," Appl. Opt. 51, 6508-6517 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-27-6508


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. A. Gault, S. Brown, A. Moise, D. Liang, G. Sellar, G. G. Shepherd, and J. Wimperis, “ERWIN: an E-region wind interferometer,” Appl. Opt. 35, 2913–2922 (1996). [CrossRef]
  2. G. G. Shepherd, W. A. Gault, D. W. Miller, Z. Pasturczyk, S. F. Johnston, P. R. Kosteniuk, J. W. Haslett, D. J. W. Kendall, and J. R. Wimperis, “WAMDII, wide-angle Michelson Doppler image interferometer for space-lab,” Appl. Opt. 24, 1571–1584 (1985). [CrossRef]
  3. W. E. Ward, W. A. Gault, G. G. Shepherd, and N. Rowlands, “The waves Michelson interferometer: a visible/near-IR interferometer for observing middle atmosphere dynamics and constituents,” Proc. SPIE 4540, 100–111 (2001). [CrossRef]
  4. G. G. Shepherd, G. Thuillier, W. A. Gault, J. M. Alunni, J.-F. Brun, S. Brune, P. Charlot, L. L. Cogger, D.-L. Desaulniers, W. F. J. Evans, R. L. Gattinger, F. Girod, D. Harvie, R. H. Hum, D. J. W. Kendall, E. J. Llewellyn, R. P. Lowe, J. Ohrt, F. Pasternak, O. Peillet, I. Powell, Y. Rochon, W. E. Ward, R. H. Wiens, and J. Wimperis, “WINDII, the wind imaging interferometer on the upper atmosphere research satellite,” J. Geophys. Res. 98, 10725–10750 (1993). [CrossRef]
  5. Y. J. Rochon, P. Rahnama, I. C. McDade, A. Scott, W. A. Gault, and J. V. Lukovich, “Data retrieval and error analysis study on the measurement of stratospheric winds with a Michelson interferometer,” Proc. SPIE 5234, 335–346 (2004). [CrossRef]
  6. W. A. Gault, I. C. McDade, Y. J. Rochon, and A. Scott, “Filters and calibration for the SWIFT instrument on GCOM-A1,” Proc. SPIE 4881, 60–66 (2003). [CrossRef]
  7. G. G. Shepherd, I. C. McDade, W. A. Gault, Y. J. Rochon, A. Scott, N. Rowlands, and G. Buttner, “The Stratospheric Wind Interferometer For Transport studies (SWIFT),” Adv. Space Res. 4881, 1344–1346 (2001). [CrossRef]
  8. W. A. Gault, S. I. Sargoytchev, and S. Brown, “Divided mirror technique for measuring Doppler shifts with a Michelson interferometer,” Proc. SPIE 4306, 266 (2001). [CrossRef]
  9. J. C. Bird, F. Liang, B. H. Solheim, and G. G. Shepherd, “A polarizing Michelson interferometer for measuring thermospheric winds,” Meas. Sci. Technol. 6, 1368–1378 (1995). [CrossRef]
  10. G. Thuillier, W. Gault, J. F. Brun, M. Herse, W. Ward, and C. Hersom, “In-flight calibration of the wind imaging interferometer (WINDII) on board the upper atmosphere research satellite,” Appl. Opt. 37, 1356–1369 (1998). [CrossRef]
  11. C. Zhang, H. Zhu, and B. Zhao, “The tempo-spatially modulated polarization atmosphere Michelson interferometer,” Opt. Express 19, 9626–9635 (2011). [CrossRef]
  12. C. Zhang and X. Jian, “Wide-spectrum reconstruction method for a birefringence interference imaging spectrometer,” Opt. Lett. 35, 366–368 (2010). [CrossRef]
  13. C. Zhang and J. He, “The generalization of upper atmospheric wind and temperature based on the Voigt line shape profile,” Opt. Express 14, 12561–12567 (2006). [CrossRef]
  14. C. Zhang, Q. Wu, and T. Mu, “Influences of pyramid prism deflection on inversion of wind velocity and temperature in a novel static polarization wind imaging interferometer,” Appl. Opt. 50, 6134–6139 (2011). [CrossRef]
  15. C. Zhang, B. Zhao, and B. Xiangli, “Interference image spectroscopy for upper atmospheric wind field measurement,” Optik 117, 265–270 (2006). [CrossRef]
  16. H. Zhu, C. Zhang, and X. Jian, “A wide field wind image interferometer with chromatic and thermal compensation,” Acta Phys. Sin. 59, 893–898 (2010) (in Chinese).
  17. C. Zhang and L. Zhu, “Influence of the polarization direction on the modulation depth and interferential intensity of a new polarizing atmospheric Michelson interferometer,” Acta Phys. Sin. 59, 989–997 (2010) (in Chinese).
  18. J. Wang, C. Zhang, B. Zhao, and N. Liu, “Study on the rule of light transmission through the four-sided pyramid prism in the static polarization wind imaging interferometer,” Acta Phys. Sin. 59, 1631–1637 (2010) (in Chinese).
  19. Q. Yang, R. Zhou, and B. Zhao, “Tilt tolerance of the moving mirror in Michelson interferometric spectrometer,” Acta Photon. Sin. 38, 677–680 (2009) (in Chinese).
  20. B. Xiang, J. Yang, Z. Gao, and G. Liu, “On the tolerance of the mirror tilting in Fourier transform interferometer,” Acta Photon. Sin. 26, 132–135 (1997) (in Chinese).
  21. Q. Yang, “Moving corner-cube mirror interferometer and reflection characteristic of corner-cube mirror,” Appl. Opt. 49, 4088–4095 (2010). [CrossRef]
  22. Q. Yang, R. Zhou, and B. Zhao, “Principle of the moving-mirror-pair interferometer and the tilt tolerance of the double moving mirror,” Appl. Opt. 47, 2486–2493 (2008). [CrossRef]
  23. R. J. Bell, Introductory Fourier Transform Spectroscopy(Academic, 1972), Chapter 1.
  24. C. Zhang, B. Zhao, B. Xiangli, and Y. Li, “Interference image spectroscopy for upper atmospheric wind field measurement,” Optik 117, 265–270 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited