OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 27 — Sep. 20, 2012
  • pp: 6571–6577

Technique for in situ measurement of free spectral range and transverse mode spacing of optical cavities

Alberto Stochino, Koji Arai, and Rana X. Adhikari  »View Author Affiliations

Applied Optics, Vol. 51, Issue 27, pp. 6571-6577 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (367 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Length and g-factor are fundamental parameters that characterize optical cavities. We developed a technique to measure these parameters in situ by determining the frequency spacing between the resonances of fundamental and spatial modes of an optical cavity. Two laser beams are injected into the cavity, and their relative frequency is scanned by a phase-lock loop, while the cavity is locked to either laser. The measurement of the amplitude of their beat note in transmission reveals the resonances of the longitudinal and the transverse modes of the cavity and their spacing. This method proves particularly useful to characterize complex optical systems, including very long and/or coupled optical cavities, as in gravitational-wave interferometers. This technique and the results of its application to the coupled cavities of a 40 m-long gravitational-wave interferometer prototype are presented here.

© 2012 Optical Society of America

OCIS Codes
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.3940) Instrumentation, measurement, and metrology : Metrology
(350.1270) Other areas of optics : Astronomy and astrophysics

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: June 14, 2012
Manuscript Accepted: July 30, 2012
Published: September 17, 2012

Alberto Stochino, Koji Arai, and Rana X. Adhikari, "Technique for in situ measurement of free spectral range and transverse mode spacing of optical cavities," Appl. Opt. 51, 6571-6577 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Araya, S. Telada, K. Tochikubo, S. Taniguchi, R. Takahashi, K. Kawabe, D. Tatsumi, T. Yamazaki, S. Kawamura, S. Miyoki, S. Moriwaki, M. Musha, S. Nagano, M.-K. Fujimoto, K. Horikoshi, N. Mio, Y. Naito, A. Takamori, and K. Yamamoto, “Absolute-length determination of a long-baseline Fabry–Perot cavity by means of resonating modulation sidebands,” Appl. Opt. 38, 2848–2856 (1999). [CrossRef]
  2. M. Rakhmanov, F. Bondu, O. Debieu, and R. L. Savage, “Characterization of the LIGO 4 km Fabry–Perot cavities via their high-frequency dynamic responses to length and laser frequency variations,” Class. Quantum Grav. 21, S487–S492 (2004). [CrossRef]
  3. B. P. Abbott and The LIGO Scientific Collaboration, “LIGO: The Laser Interferometer Gravitational-wave Observatory,” Rept. Prog. Phys. 72, 076901 (2009). [CrossRef]
  4. T. Accadia and The Virgo Collaboration, “Status and perspectives of the Virgo gravitational wave detector,” J. Phys.: Conf. Ser. 23, 012074 (2010).
  5. K. Kuroda, “Status of LCGT,” Classical Quantum Gravity 27, 084004 (2010). [CrossRef]
  6. H. Grote and The GEO Collaboration, “The GEO 600 status,” Class. Quantum Grav. 27, 084003 (2010).
  7. D. Redding, M. Regehr, and L. Sievers, “Dynamic models of Fabry–Perot interferometers,” Appl. Opt. 41, 2894–2906 (2002). [CrossRef]
  8. R. L. Ward, R. Adhikari, B. Abbott, R. Abbott, D. Barron, R. Bork, T. Fricke, V. Frolov, J. Heefner, A. Ivanov, O. Miyakawa, K. McKenzie, B. Slagmolen, M. Smith, R. Taylor, S. Vass, S. Waldman, and A. Weinstein, “DC readout experiment at the Caltech 40 m prototype interferometer,” Class. Quantum Grav. 25, 114030 (2008). [CrossRef]
  9. R. L. Ward, “Length sensing and control of a prototype advanced interferometric gravitational wave detector,” Ph.D. thesis (California Institute of Technology, 2010).
  10. A. Stochino, “Design and characterization of optical cavities and length sensing and control system of an advanced gravitational wave interferometer,” Ph.D. thesis (University of Siena, 2010). LIGO Document P1000148, available at https://dcc.ligo.org .
  11. J. Ye, “Absolute measurement of a long, arbitrary distance to less than an optical fringe,” Opt. Lett. 29, 1153–1155 (2004). [CrossRef]
  12. M. Rakhmanov, M. Evans, and H. Yamamoto, “An optical vernier technique for in situ measurement of the length of long Fabry–Perot cavities,” Meas. Sci. Technol. 10, 190–194 (1999). [CrossRef]
  13. N. Uehara and K. Ueda, “Accurate measurement of the radius of curvature of a concave mirror and the power dependence in a high-finesse Fabry–Perot interferometer,” Appl. Opt. 34, 5611–5619 (1995). [CrossRef]
  14. R. DeVoe and R. Brewer, “Laser-frequency division and stabilization,” Phys. Rev. A 30, 2827–2829 (1984). [CrossRef]
  15. A. Siegman, Lasers (University Science Books, 1986).
  16. S. Habraken and G. Nienhuis, “Modes of a twisted optical cavity,” Phys. Rev. A 75, 033819 (2007). [CrossRef]
  17. J. B. Armor and S. R. Robinson, “Phasealock control considerations for coherently combined lasers,” Appl. Opt. 18, 3165–3175 (1979).
  18. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Lasers Opt. 31, 97–105 (1983). [CrossRef]
  19. D. Z. Anderson, “Alignment of resonant optical cavities,” Appl. Opt. 23, 2944–2949 (1984). [CrossRef]
  20. A. Weinstein, “Advanced LIGO optical configuration and prototyping effort,” Class. Quantum Grav. 19, 1575–1584 (2002). [CrossRef]
  21. G. M. Harry and The LIGO Scientific Collaboration, “Advanced LIGO: the next generation of gravitational wave detectors,” Class. Quantum Grav. 27, 084006 (2010). [CrossRef]
  22. B. Willke, K. Danzmann, M. Frede, P. King, D. Kracht, P. Kwee, O. Puncken, R. L. Savage, B. Schulz, F. Seifert, C. Veltkamp, S. Wagner, P. Weels, and L. Winkelmann, “Stabilized lasers for advanced gravitational wave detectors,” Class. Quantum Grav. 25, 114040 (2008). [CrossRef]
  23. K.-E. Elssner, A. Vogel, J. Grzanna, and G. Schulz, “Establishing a flatness standard,” Appl. Opt. 33, 2437–2446 (1994). [CrossRef]
  24. K.-E. Elssner, R. Burow, J. Grzanna, and R. Spolaczyk, “Absolute sphericity measurement,” Appl. Opt. 28, 4649–4661 (1989). [CrossRef]
  25. D. Sigg, N. Mavalvala, J. Giaime, P. Fritschel, and D. Shoemaker, “Signal extraction in a power-recycled Michelson interferometer with Fabry–Perot arm cavities by use of a multiple-carrier frontal modulation scheme,” Appl. Opt. 37, 5687–5693 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited