Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Surface heating by optical beams and application to mid-infrared imaging

Not Accessible

Your library or personal account may give you access

Abstract

Heating of surfaces by optical beams is investigated theoretically and compared with experimental results in the context of infrared imaging with vanadium dioxide thin films. Using known solutions for the diffusion of point heat sources at the interface between two semi-infinite media, the theory is extended to beams of Gaussian and flat profiles, for steady-state and dynamic regimes. Parameters relevant to imaging, such as spatial resolution and response time, are linked to thermal diffusivity, beam dimensions, and intensity.

© 2012 Optical Society of America

Full Article  |  PDF Article
More Like This
Effect of substrate orientation on terahertz optical transmission through VO2 thin films and application to functional antireflection coatings

Yanhan Zhu, Yong Zhao, Mark Holtz, Zhaoyang Fan, and Ayrton A. Bernussi
J. Opt. Soc. Am. B 29(9) 2373-2378 (2012)

Temperature distributions produced by scanning Gaussian laser beams

D. J. Sanders
Appl. Opt. 23(1) 30-35 (1984)

Frequency-modulated impulse response photothermal detection through optical reflectance. 1: Theory

Andreas Mandelis and Joan F. Power
Appl. Opt. 27(16) 3397-3407 (1988)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (34)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.