OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 27 — Sep. 20, 2012
  • pp: 6578–6585

Surface heating by optical beams and application to mid-infrared imaging

Alain Haché, Phuong Anh Do, and Stefano Bonora  »View Author Affiliations


Applied Optics, Vol. 51, Issue 27, pp. 6578-6585 (2012)
http://dx.doi.org/10.1364/AO.51.006578


View Full Text Article

Enhanced HTML    Acrobat PDF (493 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Heating of surfaces by optical beams is investigated theoretically and compared with experimental results in the context of infrared imaging with vanadium dioxide thin films. Using known solutions for the diffusion of point heat sources at the interface between two semi-infinite media, the theory is extended to beams of Gaussian and flat profiles, for steady-state and dynamic regimes. Parameters relevant to imaging, such as spatial resolution and response time, are linked to thermal diffusivity, beam dimensions, and intensity.

© 2012 Optical Society of America

OCIS Codes
(040.3060) Detectors : Infrared
(120.6810) Instrumentation, measurement, and metrology : Thermal effects

ToC Category:
Detectors

History
Original Manuscript: May 31, 2012
Revised Manuscript: August 19, 2012
Manuscript Accepted: August 19, 2012
Published: September 17, 2012

Citation
Alain Haché, Phuong Anh Do, and Stefano Bonora, "Surface heating by optical beams and application to mid-infrared imaging," Appl. Opt. 51, 6578-6585 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-27-6578


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. C. Forget, I. Barbereau, D. Fournier, S. Tuli, and A. B. Battacharyya, “Electronic diffusivity measurement in silicon by photothermal microscopy,” Appl. Phys. Lett. 69, 1107–1109 (1996). [CrossRef]
  2. S. Hirschi, A. C. Boccara, F. Lepoutre, and Z. Bozoki, “Interferometric polarization microscope for thermoelastic imaging of polycrystalline materials: experiments and model,” J. Opt. 28, 142–150 (1997). [CrossRef]
  3. A. C. Boccara, D. Fournier, W. Jackson, and N. M. Amer, “Sensitive photothermal deflection technique for measuring absorption in optically thin media,” Opt. Lett. 5, 377–379 (1980). [CrossRef]
  4. W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, “Method of determining thermal diffusivity, heat capacity and thermal conductivity,” J. App. Phys. 32, 1679–1684 (1961). [CrossRef]
  5. A. Passian, A. Lereu, E. Arakawa, A. Wig, T. Thundat, and T. Ferrell, “Modulation of multiple photon energies by use of surface plasmons,” Opt. Lett. 30, 41–43 (2005). [CrossRef]
  6. A. Passian, A. L. Lereu, E. T. Arakawa, R. H. Ritchie, T. Thundat, and T. L. Ferrell, “Opto-electronic versus electro-optic modulation,” Appl. Phys. Lett. 85, 2703–2705 (2004). [CrossRef]
  7. L. Tetard, A. Passian, R. H. Farahi, B. Davison, and T. Thundat, “Optomechanical spectroscopy with broadband interferometric and quantum cascade laser sources,” Opt. Lett. 36, 3251–3253 (2011). [CrossRef]
  8. L. Tetard, A. Passian, R. H. Farahi, B. H. Davison, A. L. Lereu, and T. Thundat, “Optical and plasmonic spectroscopy with cantilever shaped materials,” J. Phys. D 44, 445102 (2011). [CrossRef]
  9. R. Farahi, A. Passian, T. Ferrell, and T. Thundat, “Marangoni forces created by surface plasmon decay,” Opt. Lett. 30, 616–618 (2005). [CrossRef]
  10. R. H. Farahi, A. Passian, L. Tetard, and T. Thundat, “Pump–probe photothermal spectroscopy using quantum cascade lasers,” J. Phys. D 45, 125101 (2012). [CrossRef]
  11. D. B. Chrisey and G. K. Hubler, eds., Pulsed Laser Deposition of Thin Films (Wiley, 1994).
  12. M. Lax, “Temperature rise induced by a laser beam,” J. Appl. Phys. 48, 3919–3926 (1977). [CrossRef]
  13. S. Bonora, U. Bortolozzo, S. Residori, R. Balu, and P. V. Ashrit, “Mid-IR to near-IR image conversion by thermally induced optical switching in vanadium dioxide,” Opt. Lett. 35, 103–105 (2010). [CrossRef]
  14. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. (Oxford University, 1995), pp. 353–386.
  15. K. D. Cole, J. V. Beck, A. Haji-Sheikh, and B. Litkouhi, Heat Conduction using Green’s Functions, 2nd ed. (CRC Press, 2011).
  16. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley-Interscience, 2007), Chap. 3.
  17. R. Balu and P. V. Ashrit, “Near-zero IR transmission in the metal-insulator transition of VO2 thin films,” Appl. Phys. Lett. 92, 021904 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited