OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 27 — Sep. 20, 2012
  • pp: 6618–6623

Simulation of electrowetting lens and prism arrays for wavefront compensation

Juliet T. Gopinath, Victor M. Bright, Carol C. Cogswell, Robert D. Niederriter, Alexander Watson, Ramzi Zahreddine, and Robert H. Cormack  »View Author Affiliations


Applied Optics, Vol. 51, Issue 27, pp. 6618-6623 (2012)
http://dx.doi.org/10.1364/AO.51.006618


View Full Text Article

Enhanced HTML    Acrobat PDF (309 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel application of electrowetting devices has been simulated: wavefront correction using an array of electrowetting lenses and prisms. Five waves of distortion can be corrected with Strehl ratios of 0.9 or higher, utilizing piston, tip–tilt, and curvature corrections from arrays of 19 elements and fill factors as low as 40%. Effective control of piston can be achieved by placing the liquid lens array at the focus of two microlens arrays. Seven waves of piston delay can be generated with variation in focal length between 1.5 and 500 mm.

© 2012 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(230.0230) Optical devices : Optical devices
(010.1285) Atmospheric and oceanic optics : Atmospheric correction

ToC Category:
Optical Devices

History
Original Manuscript: June 14, 2012
Revised Manuscript: August 20, 2012
Manuscript Accepted: August 20, 2012
Published: September 18, 2012

Citation
Juliet T. Gopinath, Victor M. Bright, Carol C. Cogswell, Robert D. Niederriter, Alexander Watson, Ramzi Zahreddine, and Robert H. Cormack, "Simulation of electrowetting lens and prism arrays for wavefront compensation," Appl. Opt. 51, 6618-6623 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-27-6618


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. S. Kopeika, “A System Engineering Approach to Imaging,” (SPIE, 1998).
  2. R. K. Tyson, “Principles of Adaptive Optics,” (CRC Press, 2011).
  3. F. Mugele and J.-C. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matt. 17, R705–R774 (2005). [CrossRef]
  4. F. Krogmann, W. Moench, and H. Zappe, “A MEMS-based variable micro-lens system,” J. Opt. A 8, S330–S336 (2006). [CrossRef]
  5. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004). [CrossRef]
  6. W. Han, J. W. Haus, P. McManamon, J. Heikenfeld, N. Smith, and J. Yang, “Transmissive beam steering through electrowetting microprism arrays,” Opt. Commun. 283, 1174–1181 (2010). [CrossRef]
  7. G. D. Love, “Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator,” Appl. Opt. 36, 1517–1524 (1997). [CrossRef]
  8. C. Warde, A. D. Fisher, D. M. Cocco, and M. Y. Burmawi, “Microchannel spatial light modulator,” Opt. Lett. 3, 196–198 (1978). [CrossRef]
  9. T. Weyrauch, M. A. Vorontsov, T. G. Bifano, A. Tuantranont, V. M. Bright, J. Karpinksy, and J. Hammer, “Performance evaluation of micromachined mirror arrays for adaptive optics,” Proc. SPIE 4124, 32–41 (2000). [CrossRef]
  10. L. Z. Schatzberg, T. Bifano, S. Cornelissen, J. Stewart, and Z. Bleier, “Secure optical communication system utilizing deformable MEMS mirrors,” Proc. SPIE 7209, 72090C (2009). [CrossRef]
  11. M. C. Roggemann, V. M. Bright, B. M. Welsh, W. D. Cowan, and M. Lett, “Micro-electro-mechanical deformable mirrors for aberration control in optical systems,” Opt. Quantum Electron. 31, 451–468 (1999). [CrossRef]
  12. W. D. Cowan, M. K. Lee, B. M. Welsh, V. M. Bright, and M. C. Roggemann, “Surface micromachined segmented mirrors for adaptive optics,” IEEE J. Sel. Top. Quantum Electron. 5, 90–101 (1999). [CrossRef]
  13. M. A. Ealey and J. A. Wellman, “Deformable mirrors: design fundamentals, key performance specifications, and parametric trades,” Proc. SPIE 1543, 36–51 (1992). [CrossRef]
  14. H. Ren, D. Fox, P. A. Anderson, B. Wu, and S.-T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14, 8031–8036 (2006). [CrossRef]
  15. Y. Hongbin, Z. Guangya, C. F. Siong, and L. Feiwen, “Optofluidic variable aperture,” Opt. Lett. 33, 548–550(2008). [CrossRef]
  16. D.-Y. Zhang, N. Justis, V. Lien, Y. Berdichevsky, and Y.-H. Lo, “High-performance fluidic adaptive lenses,” Appl. Opt. 43, 783–787 (2004). [CrossRef]
  17. J. Y. Chen, A. Kutana, C. P. Collier, and K. P. Giapis, “Electrowetting in carbon nanotubes,” Science 310, 1480–1483 (2005). [CrossRef]
  18. N. R. Smith, L. Zhou, J. Zhang, and J. Heikenfeld, “Fabrication and demonstration of electrowetting liquid lens arrays,” J. Disp. Technol. 5, 411–413 (2009). [CrossRef]
  19. S. Berry, J. Kedzierski, and B. Abedian, “Low voltage electrowetting using thin fluoropolymer films,” J. Colloid Interface Sci. 303, 517 (2006). [CrossRef]
  20. A. A. Kornysheve, A. R. Kucernak, M. Marinescu, C. W. Monroe, A. E. S. Sleightholme, and M. Urbakh, “Ultra-low-voltage electrowetting,” J. Phys. Chem. 114, 14885 (2010). [CrossRef]
  21. S.-L. Lee and C.-F. Yang, “Numerical simulation for meniscus shape and optical performance of a MEMS-based liquid micro-lens,” Opt. Express 16, 19995–20007 (2008). [CrossRef]
  22. R. D. Niederriter, A. M. Watson, R. N. Zahreddine, C. J. Cogswell, R. H. Cormack, V. M. Bright, and J. T. Gopinath, “Individually addressable electrowetting lens arrays for adaptive optics,” submitted to Opt. Express. (June2012)
  23. J. E. Kansky, C. X. Yu, D. V. Murphy, S. E. J. Shaw, R. C. Lawrence, and C. Higgs, “Beam control of a 2D polarization maintaining fiber optic phased array with high-fiber count,” Proc. SPIE 6306, 63060G (2006). [CrossRef]
  24. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207 (1976). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited