OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 27 — Sep. 20, 2012
  • pp: 6624–6630

Proton irradiation damage mechanism of PANDA-type polarization-maintaining optical fibers

Hongchen Zhang, Yong Liu, Wenqiang Qiao, Hai Liu, Huijie Xue, Shiyu He, and Yanhua Zhang  »View Author Affiliations

Applied Optics, Vol. 51, Issue 27, pp. 6624-6630 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (892 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The effects of proton irradiation with energies of 3.5 and 5 MeV on the optical properties of PANDA (polarization-maintaining and absorption-reducing) optical fiber were investigated. The displacement and the ionization damage in the fiber induced by proton irradiation at 3.5, 5, and 10 MeV were calculated, respectively, using a Stopping and Range of Ions in Matter code. The irradiation-induced defects were analyzed by means of x-ray photoelectron spectroscopy, electron paramagnetic resonance, Fourier-transform infrared spectrometry, and broadband optical spectrum analysis. The results show that the proton irradiation leads to an increase of optical loss around 1310 nm and that the effect of 3.5 MeV protons is more severe than that of 5 MeV.

© 2012 Optical Society of America

OCIS Codes
(040.2840) Detectors : Heterodyne
(060.2420) Fiber optics and optical communications : Fibers, polarization-maintaining
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms
(350.1820) Other areas of optics : Damage

ToC Category:

Original Manuscript: January 13, 2012
Revised Manuscript: July 11, 2012
Manuscript Accepted: July 15, 2012
Published: September 19, 2012

Hongchen Zhang, Yong Liu, Wenqiang Qiao, Hai Liu, Huijie Xue, Shiyu He, and Yanhua Zhang, "Proton irradiation damage mechanism of PANDA-type polarization-maintaining optical fibers," Appl. Opt. 51, 6624-6630 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Y. Fu, H. Y. Tam, L. Shao, X. Dong, P. K. A. Wai, C. Liu, and S. K. Khijwania, “Pressure sensor realized with PM photonic crystal fiber-based Sagnac interferometer,” Appl. Opt. 47, 2835–2839 (2008). [CrossRef]
  2. P. Lu, L. Men, and Q. Chen, “Wavelength control with grating imprinted fiber Sagnac loop mirror by polarization and strain tuning,” J. Appl. Phys. 106, 013111 (2009). [CrossRef]
  3. O. Frazao, J. M. Baptista, J. L. Santos, and P. Roy, “Curvature sensor using a highly birefringent photonic crystal fiber with two asymmetric hole regions in a Sagnac interferometer,” Appl. Opt. 47, 2520–2523 (2008). [CrossRef]
  4. Q. Y. Wang, H. G. Geng, C. Y. Sun, Z. H. Zhang, and S. Y. He, “Evolution of defects in a multicomponent glass irradiated by 1 MeV electrons,” Nucl. Instrum. Methods Phys. Res. B 268, 1478–1481 (2010). [CrossRef]
  5. N. H. Yaakob, H. Wagiran, I. Hossain, A. T. Ramli, D. A. Bradley, S. Hashim, and H. Ali, “Electron irradiation response on Ge and Al-doped SiO2 optical fibres,” Nucl. Instrum. Methods Phys. Res. A 637, 185–189 (2011). [CrossRef]
  6. R. D. Maurer, E. J. Schiel, S. Kronenberg, and R. A. Lux, “Effect of neutron- and gamma-radiation on glass optical waveguides,” Appl. Opt. 12, 2024–2026 (1973). [CrossRef]
  7. E. J. Friebele, “Optical fiber waveguides in radiation environments,” Opt. Eng. 18, 552–561 (1979).
  8. S. Hashim, D. A. Bradley, N. Peng, A. T. Ramli, and H. Wagiran, “The thermoluminescence response of oxygen-doped optical fibres subjected to photon and electron irradiations,” Nucl. Instrum. Methods Phys. Res. B 619, 291–294 (2010). [CrossRef]
  9. A. Alessi, S. Girard, C. Marcandella, S. Agnello, M. Cannas, A. Boukenter, and Y. Ouerdane, “X-ray irradiation effects on a multistep Ge-doped silica fiber produced using different drawing conditions,” J. Non-Cryst. Solids 357, 1966–1970 (2011). [CrossRef]
  10. N. H. Yaakob, H. Wagiran, M. I. Hossain, A. T. Ramli, D. A. Bradley, and H. Ali, “Low-dose photon irradiation response of Ge and Al-doped SiO2 optical fibres,” Appl. Radiat. Isotopes 69, 1189–1192 (2011). [CrossRef]
  11. A. Mahrenia, A. B. Mohamada, A. A. H. Kadhuma, W. R. W. Dauda, and S. E. Iyukeb, “Nafion/silicon oxide/phosphotungstic acid nanocomposite membrane with enhanced proton conductivity,” J. Membr. Sci. 327, 32–40 (2009). [CrossRef]
  12. B. Tsuchiya, S. Kondo, T. Tsurui, K. Toh, S. Nagata, and T. Shikama, “Correlation between radiation-induced defects, and optical properties of pure fused silica-core optical fiber, under gamma-ray irradiation in air at 1273 K,” J. Nucl. Mater. 417, 810–813 (2011). [CrossRef]
  13. Q. Y. Wang, H. B. Geng, S. Y. He, D. Z. Yang, Z. H. Zhang, X. B. Qin, and Z. X. Li, “Effects of 80 keV proton radiation on the optical properties and microstructure of type-GG17 glass as rubidium lamp envelope,” Nucl. Instrum. Methods Phys. Res. B 267, 2489–2494 (2009). [CrossRef]
  14. S. Girard, B. Tortech, E. Régnier, M. V. Uffelen, A. Gusarov, Y. Ouerdane, J. Baggio, P. Paillet, V. Ferlet-Cavrois, A. Boukenter, J. P. Meunier, F. Berghmans, J. R. Schwank, M. R. Shaneyfelt, J. A. Felix, E. W. Blackmore, and H. Thienpont, “Proton- and gamma-induced effects on erbium-doped optical fibers,” IEEE Trans. Nucl. Sci. 54, 2426–2434 (2007). [CrossRef]
  15. A. L. Tchebotareva, J. L. Brebner, S. Roorda, and J. Albert, “Effect of proton implantation on the photosensitivity of SMF-28 optical fiber,” Nucl. Instrum. Methods Phys. Res. B 148, 687–691 (1999). [CrossRef]
  16. J. Y. Seung, S. Masahiro, O. Yoshimichi, F. Makoto, A. Kouichi, Y. Eisuke, and O. Satoshi, “Birefringence in optical fibers formed by proton implantation,” Nucl. Instrum. Methods Phys. Res. B 265, 490–494 (2007). [CrossRef]
  17. D. L. Griscom, “γ-ray-induced visible/infrared optical absorption bands in pure and F-doped silica-core fibers: are they due to self-trapped holes,” J. Non-Cryst. Solids. 349, 139–147 (2004). [CrossRef]
  18. H. C. Zhang, H. Liu, W. Q. Qiang, H. J. Xue, and S. Y. He, “New model for assessing dose and dose rate sensitivity of gamma ray radiation loss in polarization maintaining optical fibers,” Nucl. Instrum. Methods Phys. Res. B 274, 115–119 (2012). [CrossRef]
  19. X. J. Li, H.-B. Geng, M. J. Lan, D. Z. Yang, S. Y. He, and C. M. Liu, “Degradation mechanisms of current gain in NPN transistors,” Chin. Phys. B 19, 066103 (2010). [CrossRef]
  20. T. Y. Lim, C. Y. Kim, and B. S. Kim, “Effects of SiO2 barrier and N2 annealing on Sb-doped SnO2 transparent conducting film prepared by sol-gel dip coating,” J. Sol–Gel Sci. Technol. 31, 263–266 (2004). [CrossRef]
  21. S. M. Francis, W. E. Stephens, and N. V. Richardson, “X-ray photoelectron and infrared spectroscopies of quartz samples of contrasting toxicity,” Environ. Health 8(Suppl. 1), S4 (2009). [CrossRef]
  22. Y. J. Lin, W. X. Lin, C. T. Lee, and H. C. Chang, “Electronic transport and Schottky barrier heights of Ni/Au contacts on n-type GaN surface with and without a thin native oxide layer,” Jpn. J. Appl. Phys. 45, 2505–2508 (2006). [CrossRef]
  23. S. H. Lee, S. Jeong, and J. Moon, “Nanoparticle-dispersed high-k organic–inorganic hybrid dielectrics for organic thin-film transistors,” Org. Electron. 10, 982–989 (2009). [CrossRef]
  24. I. H. Tan, M. L. P. da Silva, and N. R. Demarquette, “Paper surface modification by plasma deposition of double layers of organic silicon compounds,” J. Mater. Chem. 11, 1019–1025 (2001). [CrossRef]
  25. G. Q. Zhang, D. P. Xu, G. X. Song, Y. F. Xue, L. Li, D. Y. Wang, and W. H. Si, “Effect of Si─OH on the transformation of amorphous SiO2 to coesite,” J. Alloys Compd. 476, L4–L7 (2009). [CrossRef]
  26. J. X. Wen, W. Y. Luo, Z. Y. Xiao, T. Y. Wang, Z. Y. Chen, and X. L. Zeng, “Formation and conversion of defect centers in low water peak single mode optical fiber induced by gamma rays irradiation,” J. Appl. Phys. 107, 044904 (2010). [CrossRef]
  27. F. Tetsuo, F. Minoru, O. Syunji, I. S. Tsutomu, and I. Noriaki, “Effects of proton implantation on amorphous SiO2predamaged by Si implantation,” Jpn. J. Appl. Phys. 29, L1846–L1848 (1990). [CrossRef]
  28. D. L. Griscom, “Electron spin resonance in glasses,” J. Non-Cryst. Solids 40, 211–272 (1980). [CrossRef]
  29. I. A. Shkrob, B. M. Tadjikov, and A. D. Trifunac, “Magnetic resonance studies on radiation-induced point defects in mixed oxide glasses. I. Spin centers in B2O3 and alkali borate glasses,” J. Non-Cryst. Solids. 262, 6–34 (2000). [CrossRef]
  30. D. Cacaina, H. Ylänen, D. A. Udvar, and S. Simon, “EPR study of gamma irradiated yttrium bioactive glasses and yttrium silica sol-gel microspheres,” J. Optoelectron. Adv. Mater. 9, 675–679 (2007).
  31. Y. G. Han, G. H. Kim, K. S. Lee, and S. B. Lee, “Fabrication of low OH loss holey fibers with varying air hole sizes and their optical properties,” Opt. Commun. 282, 1780–1784 (2009). [CrossRef]
  32. J. X. Wen, G. D. Peng, W. Y. Luo, Z. Y. Xiao, Z. Y. Chen, and T. Y. Wang, “Gamma irradiation effect on Rayleigh scattering in low water peak single-mode optical fibers,” Opt. Express 19, 23271–23278 (2011). [CrossRef]
  33. T. Kakuta, T. Shikama, T. Nishitani, B. Brichard, A. Krassilinikov, A. Tomashuk, S. Yamamoto, and S. Kasai, “Round-robin irradiation test of radiation resistant optical fibers for ITER diagnostic application,” J. Nucl. Mater. 307–311, 1277–1281 (2002). [CrossRef]
  34. J. Canning, H. R. Sørensen, and M. Kristensen, “Solid-state autocatalysis and oscillatory reactions in silicate glass systems,” Opt. Commun. 260, 595–600 (2006). [CrossRef]
  35. T. Allsop, L. Zhang, D. J. Webb, and I. Bennion, “Discrimination between strain and temperature effects using first and second-order diffraction from a long-period grating,” Opt. Commun. 211, 103–108 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited