OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 27 — Sep. 20, 2012
  • pp: 6653–6660

Photoinduced grating formation in a polymer containing azo-carbazole dyes

Yutaka Kawabe, Kodai Fukuzawa, Takuya Uemura, Katsufumi Matsuura, Toshio Yoshikawa, Jun-ichi Nishide, and Hiroyuki Sasabe  »View Author Affiliations

Applied Optics, Vol. 51, Issue 27, pp. 6653-6660 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (677 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Although some azo-carbazole derivatives attached on or doped into inert polymers are known to show photorefractive effect without external electric field, the origin of their asymmetric energy transfer in two-beam coupling experiments were unknown. We made the two-beam coupling experiment followed by sample translation and one-beam diffraction at 633 nm for thick films composed of 3-[(4-nitrophenyl)]azo-9H-carbazole-9-ethanol (NACzEtOH) and poly(methylmethacrylate), finding that photoinduced gratings grew in several minutes accompanied with phase displacement of the gratings, but the phase shift was not always synchronized with the refractive index modulation. We reformulated the Kogelnik’s coupled-wave theory with strict energy conservation law for analysis. Comparison of the grating growth and erasure at 532 nm to Disperse Red 1 (DR1), the most well-known azo dye showed that the photoisomerization was dominant at this wavelength and that the azo-carbazole dyes were faster in response time and more resistive to erasure than DR1.

© 2012 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(090.7330) Holography : Volume gratings
(160.4330) Materials : Nonlinear optical materials
(190.4710) Nonlinear optics : Optical nonlinearities in organic materials
(190.5330) Nonlinear optics : Photorefractive optics
(190.2055) Nonlinear optics : Dynamic gratings

ToC Category:
Nonlinear Optics

Original Manuscript: June 18, 2012
Revised Manuscript: August 6, 2012
Manuscript Accepted: August 16, 2012
Published: September 20, 2012

Yutaka Kawabe, Kodai Fukuzawa, Takuya Uemura, Katsufumi Matsuura, Toshio Yoshikawa, Jun-ichi Nishide, and Hiroyuki Sasabe, "Photoinduced grating formation in a polymer containing azo-carbazole dyes," Appl. Opt. 51, 6653-6660 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Günter and J.-P. Huignard, eds. Photorefractive Materials and Their Applications (Springer, 2006), Vols. 1–3.
  2. O. Ostroverkhova and W. E. Moener, “Organic photorefractives: mechanism, materials, and applications,” Chem. Rev. 104, 3267–3314 (2004). [CrossRef]
  3. S. Köber, M. Salvador, and K. Meeholz, “Organic photorefractive materials and applications,” Adv. Mater. 23, 4725–4763 (2011). [CrossRef]
  4. Y. M. Chen, Z. H. Peng, W. K. Chen, and L. P. Yu, “New photorefractive polymer based on multifunctional polyurethane,” Appl. Phys. Lett. 64, 1195–1197 (1994). [CrossRef]
  5. C.-J. Chang, H.-C. Wang, G.-Y. Liao, W.-T. Whang, J.-M. Liu, and K.-Y. Hsu, “The effect of laser wavelength on the photorefractive characteristics of PMDA-DR19 based photorefractive polymeric materials,” Polymer 38, 5063–5071(1997). [CrossRef]
  6. P. Cheben, F. del Monte, D. J. Worsfold, D. J. Carlsson, C. P. Grover, and J. D. Mackenzie, “A photorefractive organically modified silica glass with high optical gain,” Nature 408, 64–67 (2000). [CrossRef]
  7. W. Zhang, S. Bian, S. I. Kim, and M. G. Kuzyk, “High-efficiency holographic volume index grating in DR1-dye-doped poly (methyl methacrylate),” Opt. Lett. 27, 1105–1107 (2002). [CrossRef]
  8. R. Raschellà, I.-G. Marino, P. P. Lottici, D. Bersani, A. Lorenzi, and A. Montenero, “Photorefractive gratings in DR1-doped hybrid sol-gel films,” Opt. Mater. 25, 419–423 (2004). [CrossRef]
  9. J. Jeong, K. Ohnishi, H. Sato, and K. Ogino, “Observation of pseudo-photorefractivity in monolithic molecular glass,” Jpn. J. Appl. Phys. 42, L179–L181 (2003). [CrossRef]
  10. N. Tsutsumi and Y. Shimizu, “Asymmetric two-beam coupling with high optical gain and high beam diffraction in external-electric-field free polymer composites,” Jpn. J. Appl. Phys. 43, 3466–3472 (2004). [CrossRef]
  11. J. Nishide, A. Tanaka, Y. Hirama, and H. Sasabe, “Non-electric field photorefractive effect using polymer composites,” Mol. Cryst. Liq. Cryst. 491, 217–222 (2008). [CrossRef]
  12. F. Gallego-Gómez, F. Del Monte, and K. Meerholz, “Optical gain by a simple photoisomerization process,” Nat. Mater. 7, 490–497 (2008). [CrossRef]
  13. J. Mysliwiec, A. Miniewicz, S. Nespurek, M. Studenovsky, and Z. Seldakova, “Efficient holographic recording in novel azo-containing polymer,” Opt. Mater. 29, 1756–1762 (2007). [CrossRef]
  14. A. Sobolewska and A. Miniewicz, “Analysis of the kinetics of diffraction efficiency during the holographic grating recording in azobenzene functionalized polymers,” J. Phys. Chem. B 111, 1536–1544 (2007). [CrossRef]
  15. D. L. Silva, E. Schab-Balcerzak, and A. Miniewicz, “Grating translation technique as a tool for monitoring phase shifts during holographic recording in azo-polymers,” J. Appl. Phys. 108, 083540 (2010). [CrossRef]
  16. I. Naydenova, Tz. Petrova, T. Tomova, V. Dragostinova, L. Nikolova, and T. Todorov, “Polarization holographic gratings with surface relief in amorphous azobenzene containing methacrylic copolymers,” Pure Appl. Opt. 7, 723–731(1998). [CrossRef]
  17. D. Sek, E. Schab-Balcerzak, M. Solyga, and A. Miniewicz, “Polarisation-sensitive holographic recording in polyimide-containing azo-dye,” Synth. Met. 127, 89–93 (2002). [CrossRef]
  18. C. Cojocariu and P. Rochon, “Light-induced motions in azobenzene-containing polymers,” Pure Appl. Chem. 76, 1479–1497 (2004). [CrossRef]
  19. P.-A. Blanche, Ph. C. Lemaire, C. Maertens, P. Dubois, and R. Jérôme, “Photoinduced birefringence and diffraction efficiency in azo dye doped or grafted polymers; theory versus experiment of the temperature influence,” J. Opt. Soc. Am. B 17, 729–740 (2000). [CrossRef]
  20. A. Tanaka, J. Nishide, and H. Sasabe, “Asymmetric energy transfer in photorefractive polymer composites under non-electric field,” Mol. Cryst. Liq. Cryst. 504, 44–51 (2009). [CrossRef]
  21. J. Nishide, H. Kimura-Suda, T. Imai, H. Sasabe, and Y. Kawabe, “Photorefractive polymer with high optical gain under non-electric field,” J. Nonlinear Opt. Phys. Mater. 19, 629–635 (2010). [CrossRef]
  22. Z. Li, J. Li, and J. Qin, “Synthesis of polyphosphazenes as potential photorefractive materials,” React. Funct. Polym. 48, 113–118 (2001). [CrossRef]
  23. L. Zhang, M. Huang, Z. Jiang, Z. Yang, Z. Chen, Q. Gong, and S. Cao, “A carbazole-based photorefractive polyphosphazene prepared via post-azo-coupling reaction,” React. Funct. Polym. 66, 1401–1410 (2006). [CrossRef]
  24. L. Zhang, J. Shi, Z. Yang, M. Huang, Z. Chen, G. Gong, and S. Cao, “Photorefractive properties of polyphosphazenes containing carbazole-based multifunctional chromophores,” Polymer 49, 2107–2114 (2008). [CrossRef]
  25. H. Li, R. Termine, L. Angiolini, L. Giorgini, F. Mauriello, and A. Golemme, “High Tg, nonpoled photorefractive polymer,” Chem. Mater. 21, 2403–2409 (2009). [CrossRef]
  26. N. Tsutsumi, K. Kinashi, W. Sakai, J. Nishide, Y. Kawabe, and H. Sasabe, “Real-time three-dimensional holographic display using a monolithic organic compound dispersed film,” Opt. Mater. Express 2, 1003–1010 (2012). [CrossRef]
  27. P. Yeh, Introduction to Photorefractive Nonlinear Optics(Wiley, 1993).
  28. W. Zhang, S. Bian, S. I. Kim, and M. G. Kuzyk, “High-efficiency holographic volume index gratings in DR1-doped poly(methyl methacrylate),” Opt. Lett. 27, 1105–1107 (2002). [CrossRef]
  29. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969), http://adsabs.harvard.edu/abs/1969BSTJ...48.2909K .
  30. R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1971).
  31. P. Hariharan, Optical Holography (Cambridge University, 1984).
  32. A. Yariv and M. Nakamura, “Periodic structures for integrated optics,” IEEE J. Quantum Electron. 13, 233–253 (1977). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited