OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 27 — Sep. 20, 2012
  • pp: 6683–6690

Influence of two typical defects on the near-field optical properties of multilayer dielectric compression gratings

Yunxia Jin, Heyuan Guan, Fanyu Kong, Jianpeng Wang, Andreas Erdmann, Shijie Liu, Yin Du, Jianda Shao, Hongbo He, and Kui Yi  »View Author Affiliations

Applied Optics, Vol. 51, Issue 27, pp. 6683-6690 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1270 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Internal electric-field enhancement is critical for the laser-induced damage properties of multilayer dielectric compression gratings (MDG) in high-energy laser systems. Due to the complex fabrication processes of MDGs, such as coating, interference lithography, etching, and cleaning, different kinds of defects in multilayers or profiles on MDG surfaces can’t be practically avoided. Combined with a scanning electron microscope of some MDG samples, line-absence and added node seem to be two typical defects, according to which two defective MDG models are established, and numerical calculations are performed. From simulation results, the defect period and defect depth has little effect on the spectral response of the optical elements. However, they may produce large changes of internal electric-field distribution on the grating surface and even in multilayer structures, thus decreasing the damage threshold of MDG. To obtain a better understanding of the dependence of the internal electric-field enhancement on these defects, this work is focused on the near-field distributions of defective MDGs using the Fourier model method.

© 2012 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(140.3330) Lasers and laser optics : Laser damage
(230.1950) Optical devices : Diffraction gratings
(230.4170) Optical devices : Multilayers
(320.5520) Ultrafast optics : Pulse compression

ToC Category:
Diffraction and Gratings

Original Manuscript: March 6, 2012
Revised Manuscript: June 17, 2012
Manuscript Accepted: July 10, 2012
Published: September 20, 2012

Yunxia Jin, Heyuan Guan, Fanyu Kong, Jianpeng Wang, Andreas Erdmann, Shijie Liu, Yin Du, Jianda Shao, Hongbo He, and Kui Yi, "Influence of two typical defects on the near-field optical properties of multilayer dielectric compression gratings," Appl. Opt. 51, 6683-6690 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5, 454–458 (1969). [CrossRef]
  2. M. D. Perry, R. D. Boyd, J. A. Britten, D. Decker, B. W. Shore, C. Shannon, E. Shults, and L. Li, “High-efficiency multiplayer dielectric diffraction gratings,” Opt. Lett. 20, 940–941(1995). [CrossRef]
  3. M. D. Perry, D. Pennington, B. C. Stuart, G. Tietbohl, J. A. Britten, C. Brown, S. Herman, B. Golick, M. Kartz, J. Miller, H. T. Powell, M. Vergino, and V. Yanovsky, “Petawatt laser pulses,” Opt. Lett. 24, 160–162 (1999). [CrossRef]
  4. J. A. Britten, W. A. Molander, A. M. Komashko, and C. P. Barty, “Multilayer dielectric gratings for petawatt class laser systems,” in Laser-Induced Damage in Optical Materials: 2003, H. Guenther, N. Kaiser, K. L. Lewis, M. J. Soileau, and C. J. Stolz, eds. (SPIE, 2004), pp. 1–7.
  5. J. A. Britten and M. D. Perry, “High-efficiency, dielectric multiplayer gratings optimized for manufacturability and laser damage threshold,” Proc. SPIE 2714, 511–520 (1996). [CrossRef]
  6. B. W. Shore, M. D. Perry, J. A. Britten, R. D. Boyd, M. D. Feit, H. T. Nguyen, R. Chow, G. E. Loomis, and L. Li, “Design of high-efficiency dielectric reflection gratings,” J. Opt. Soc. Am. A 14, 1124–1136 (1997). [CrossRef]
  7. S. Liu, Z. Shen, W. Kong, J. Shen, Z. Deng, Y. Zhao, J. Shao, and Z. Fan, “Optimization of near-field optical field of multi-layer dielectric gratings for pulse compressor,” Opt. Commun. 267, 50–57 (2006). [CrossRef]
  8. I. Jovanovic, C. G. Brown, B. C. Stuart, W. A. Molander, N. D. Nielsen, B. Wattellier, J. A. Britten, D. M. Pennington, and C. P. J. Barty, “Precision damage tests of multilayer dielectric gratings for high-energy petawatt laser,” Proc. SPIE 5647, 34–42 (2004). [CrossRef]
  9. D. H. Martz, H. T. Nguyen, D. Patel, J. A. Britten, D. Alessi, E. Krous, Y. Wang, M. A. Larotonda, J. George, B. Knollenberg, B. M. Luther, J. J. Rocca, and C. S. Menoni, “Large area high efficiency broad bandwidth 800 nm dielectric gratings for high energy laser pulse compression,” Opt. Express 17, 23809–23816 (2009). [CrossRef]
  10. P. P. Lu, K.-X. Sun, R. L. Byer, J. A. Britten, H. T. Nguyen, J. D. Nissen, C. C. Larson, M. D. Aasen, T. C. Carlson, and C. R. Hoaglan, “Precise diffraction efficiency measurements of large-area greater-than-99%-efficient dielectric gratings at the Littrow angle,” Opt. Lett. 34, 1708–1710 (2009). [CrossRef]
  11. W. Molander, A. Komashko, J. Britten, L. Jones, C. Brown, J. Caird, I. Jovanovic, B. Wattellier, N. Nielsen, D. Pennington, and C. P. J. Barty, “Design and test of advanced multi-layer dielectric gratings for high energy petawatt,” in Third International Conference on Inertial Fusion Sciences and Applications (U.S. Department of Energy, 2003).
  12. J. Wang, Y. Jin, J. Shao, and Z. Fan, “Optimization design of an ultrabroadband, high-efficiency, all-dielectric grating,” Opt. Lett. 35, 187–189 (2010). [CrossRef]
  13. F. Canova, R. Clady, J. P. Chambaret, M. Flury, S. Tonchev, R. Fechner, and O. Parriaux, “High-efficiency, broad band, high-damage threshold high-index gratings for femtosecond pulse compression,” Opt. Express 15, 15324–15334 (2007). [CrossRef]
  14. L. Miguel and F. Jose, “Near-field diffraction of gratings with surface defects,” Appl. Opt. 49, 2190–2197(2010). [CrossRef]
  15. J. Wang, A. Erdmann, S. Liu, J. Shao, Y. Jin, H. He, and K. Yi, “Influence of geometry variations and defects on the near field optical properties of pulsed compression gratings,” Proc. SPIE 8171, 81710O (2011). [CrossRef]
  16. S. Hocquet, J. Neauport, and N. Bonod, “The role of electric field polarization of the incident laser beam in the short pulse damage mechanism of pulse compression gratings,” Appl. Phys. Lett. 99, 061101 (2011). [CrossRef]
  17. J. Neauport, E. Lavastre, G. Razé, G. Dupuy, N. Bonod, M. Balas, G. de Villele, J. Flamand, S. Kaladgew, and F. Desserouer, “Effect of electric field on laser induced damage threshold of multilayer dielectric gratings,” Opt. Express 15, 12508–12522 (2007). [CrossRef]
  18. L. Li, “Multilayer modal method for diffraction gratings of arbitrary profile, depth and permittivity,” J. Opt. Soc. Am. A 10, 2581–2591 (1993). [CrossRef]
  19. L. Li, “Reformulation of Fourier modal method for surface-relief gratings made with anisotropic materials,” J. Mod. Opt. 45, 1313–1334 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited