OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 28 — Oct. 1, 2012
  • pp: 6718–6725

Using adaptive weighted least squares approximation for coupling thermal and optical simulation

Alexander Gatej, Johannes Wasselowski, and Peter Loosen  »View Author Affiliations

Applied Optics, Vol. 51, Issue 28, pp. 6718-6725 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1000 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Thermo-optical simulation is a mandatory enhancement of classical ray tracing, since nowadays many fields in the branch of optical technology have to deal with thermal effects. This paper discusses an approach for coupling the finite element method (FEM) and ray tracing simulation by processing finite element (FE) data using scattered data approximation techniques, particularly with an adaptive weighted least squares approximation algorithm in two dimensions. The validation of the implemented interface is being conducted by comparing approximated data to analytical functions. Finally, FEM data are being processed by the developed algorithm to demonstrate the applicability on appropriate problems.

© 2012 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(080.2710) Geometric optics : Inhomogeneous optical media
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.6810) Lasers and laser optics : Thermal effects
(350.6830) Other areas of optics : Thermal lensing

ToC Category:
Lasers and Laser Optics

Original Manuscript: June 13, 2012
Revised Manuscript: August 24, 2012
Manuscript Accepted: August 25, 2012
Published: September 24, 2012

Alexander Gatej, Johannes Wasselowski, and Peter Loosen, "Using adaptive weighted least squares approximation for coupling thermal and optical simulation," Appl. Opt. 51, 6718-6725 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Langenbach, “Ray tracing in gradient-index materials,” Proc. SPIE 1780, 486–490 (1992). [CrossRef]
  2. J. Chmelfk and J. E. Barth, “An interpolation method for ray tracing in electrostatic fields calculated by the finite element method,” Proc. SPIE 2014, 133–143 (1993). [CrossRef]
  3. V. L. Genberg, “Ray tracing from finite element results,” Proc. SPIE 1998, 72–82 (1993). [CrossRef]
  4. M. Weck, C. Hermanns, H. Ostendarp, and K. Wermeyer, “Betriebsverhalten transmissiver Optiken bei der Laser-Materialbearbeitung,” Laser Optoelektron. 26, 67–72(1994).
  5. L. H. J. F. Beckmann, “Modelling of and design for thermal radial gradients in lenses for use with high power laser radiation,” Weld. World 41, 97–104 (1998).
  6. D. Bürckner-Koydl, H. Heckmann, U. Ruhnau, and R. Birkner, “Trigonometrische Durchrechnung von thermisch belasteten Optiksystemen,” in DGaO Proceedings (DGaO, 2010).
  7. M. J. Moritz, “Radial distribution of temperature in a thin lens due to absorption of light and heat conduction,” Optik 122, 1050–1057 (2011). [CrossRef]
  8. A. Sharma, D. V. Kumar, and A. K. Ghatak, “Tracing rays through graded-index media: a new method,” Appl. Opt. 21, 984–987 (1982). [CrossRef]
  9. A. Gatej, U. Thombansen, and P. Loosen, “Kombinierte Thermo-Optische Simulation für Optische Systeme,” in DGaO Proceedings (DGaO, 2011).
  10. P. Loosen, M. C. Funck, A. Gatej, V. Morasch, and J. Stollenwerk, “Integrative production of micro-lasers,” in Integrative Production Technology for High-Wage Countries, 1st ed., C. Brecher, ed. (Springer, 2012), pp. 995–1038.
  11. A. Gatej, U. Thombansen, and P. Loosen, “Simulation des thermischen Linseneffekts in hochbelasteten Lasersystemen,” Photonik 3, 58–60 (2012), http://photonik12.photonik.de/?p=8337 .
  12. A. Nealen, “An as-short-as-possible introduction to the least squares, weighted least squares and moving least squares methods for scattered data approximation and interpolation” (2004), http://www.nealen.com/projects/ .
  13. H. Wendland, Scattered Data Approximation (Cambridge University, 2005).
  14. G. Coombe, Practical Surface Light Fields (Proquest, 2007).
  15. D. Shepard, “A two-dimensional interpolation function for irregularly-spaced data,” in Proceedings ACM National Conference (ACM, 1968), pp. 517–524.
  16. A. Gatej, J. Wasselowski, and P. Loosen, “Thermo-optical (TOP) analysis by coupling FEM and ray tracing,” Proc. SPIE 8429, 84290E (2012). [CrossRef]
  17. “LAPACK—Linear Algebra PACKage,” http://www.netlib.org/lapack/ .
  18. “Armadillo—C++ linear algebra library,” http://arma.sourceforge.net/ .
  19. “Boost—C++ libraries,” http://www.boost.org/ .
  20. R. J. Tangelder, L. H. J. F. Beckmann, and J. Meijer, “Influence of temperature gradients on the performance of ZnSe lenses,” Proc. SPIE 1780, 294–302 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited