OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 28 — Oct. 1, 2012
  • pp: 6738–6744

Three-dimensional terahertz computed tomography of human bones

Maryelle Bessou, Bruno Chassagne, Jean-Pascal Caumes, Christophe Pradère, Philippe Maire, Marc Tondusson, and Emmanuel Abraham  »View Author Affiliations


Applied Optics, Vol. 51, Issue 28, pp. 6738-6744 (2012)
http://dx.doi.org/10.1364/AO.51.006738


View Full Text Article

Enhanced HTML    Acrobat PDF (771 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Three-dimensional terahertz computed tomography has been used to investigate dried human bones such as a lumbar vertebra, a coxal bone, and a skull, with a direct comparison with standard radiography. In spite of lower spatial resolution compared with x-ray, terahertz imaging clearly discerns a compact bone from a spongy one, with strong terahertz absorption as shown by additional terahertz time-domain transmission spectroscopy.

© 2012 Optical Society of America

OCIS Codes
(100.6950) Image processing : Tomographic image processing
(110.6880) Imaging systems : Three-dimensional image acquisition
(110.7440) Imaging systems : X-ray imaging
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(110.6795) Imaging systems : Terahertz imaging

ToC Category:
Image Processing

History
Original Manuscript: July 24, 2012
Revised Manuscript: August 23, 2012
Manuscript Accepted: August 25, 2012
Published: September 25, 2012

Citation
Maryelle Bessou, Bruno Chassagne, Jean-Pascal Caumes, Christophe Pradère, Philippe Maire, Marc Tondusson, and Emmanuel Abraham, "Three-dimensional terahertz computed tomography of human bones," Appl. Opt. 51, 6738-6744 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-28-6738


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. O. Hahn, “X-ray fluorescence analysis on iron gall inks, pencils and coloured crayons,” Stud. Conserv. 50, 23–32 (2005).
  2. M. P. Morigi, F. Casali, M. Bettuzzi, R. Brancaccio, and V. d’Errico, “Application of x-ray computed tomography to cultural heritage diagnostics,” Appl. Phys. A 100, 653–661 (2010). [CrossRef]
  3. M. J. Aitken, Thermoluminescence Dating (Academic, 1985).
  4. J. B. Jackson, J. Bowen, G. Walker, J. Labaune, G. Mourou, M. Menu, and K. Fukunaga, “A survey of terahertz applications in cultural heritage conservation science,” IEEE Trans. Terahertz Sci. Technol. 1, 220–231 (2011). [CrossRef]
  5. J.-P. Caumes, A. Younus, S. Salort, B. Chassagne, B. Recur, A. Ziéglé, A. Dautant, and E. Abraham, “Terahertz tomographic imaging of XVIIIth dynasty Egyptian sealed pottery,” Appl. Opt. 50, 3604–3608 (2011). [CrossRef]
  6. K. Fukunaga, E. Cortes, A. Cosentino, I. Stünkel, M. Leona, I. N. Duling, and D. T. Mininberg, “Investigating the use of terahertz pulsed time domain reflection imaging for the study of fabric layers of an Egyptian mummy,” J. Eur. Opt. Soc. Rapid Commun. 6, 11040 (2011). [CrossRef]
  7. M. Bessou, H. Duday, J.-P. Caumes, S. Salort, B. Chassagne, A. Dautant, A. Ziéglé, and E. Abraham, “Advantage of terahertz radiation versus x-ray to detect hidden organic materials in sealed vessels,” Opt. Commun. 285, 4175–4179 (2012). [CrossRef]
  8. M. R. Stringer, D. N. Lund, A. P. Foulds, A. Duddin, E. Berry, R. E. Miles, and A. G. Davies, “The analysis of human cortical bone by terahertz time-domain spectroscopy,” Phys. Med. Biol. 50, 3211–3219 (2005). [CrossRef]
  9. W. C. Kan, W. S. Lee, W. H. Cheung, V. P. Wallace, and E. Pickwell-MacPherson, “Terahertz pulsed imaging of knee cartilage,” Biomed. Opt. Express 1, 967–974 (2010). [CrossRef]
  10. W. Baughman, D. S. Wilbert, S. Balci, M. Bolus, P. Kung, and S. M. Kim, “Application of terahertz spectral imaging for the identification of osseous tissue,” in Proceedings of 36th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz) (IEEE, 2011), pp. 1–2.
  11. L. Öhrström, A. Bitzer, M. Walther, and F. J. Rühli, “Technical note: terahertz imaging of ancient mummies and bone,” Am. J. Phys. Anthropol. 142, 497–500 (2010). [CrossRef]
  12. B. Ferguson, S. Wang, D. Gray, D. Abbot, and X. C. Zhang, “T-ray computed tomography,” Opt. Lett. 27, 1312–1314 (2002). [CrossRef]
  13. S. Wang, B. Ferguson, D. Abbott, and X. C. Zhang, “T-ray imaging and tomography,” J. Biol. Phys. 29, 247–256 (2003). [CrossRef]
  14. S. Wang and X. C. Zhang, “Pulsed terahertz tomography,” J. Phys. D 37, R1–R36 (2004). [CrossRef]
  15. M. M. Awad and R. A. Cheville, “Transmission terahertz waveguide-based imaging below the diffraction limit,” Appl. Phys. Lett. 86, 221107 (2005). [CrossRef]
  16. X. Yin, B. W. H. Ng, B. Ferguson, and D. Abbott, “Wavelet based local tomographic image using terahertz techniques,” Digit. Signal Process. 19, 750–763 (2009). [CrossRef]
  17. A. Brahm, M. Kunz, S. Riehemann, G. Notni, and A. Tünnermann, “Volumetric spectral analysis of materials using terahertz tomography techniques,” Appl. Phys. B 100, 151–158 (2010). [CrossRef]
  18. E. Abraham, A. Younus, C. Aguerre, P. Desbarats, and P. Mounaix, “Refraction losses in terahertz computed tomography,” Opt. Commun. 283, 2050–2055 (2010). [CrossRef]
  19. D. J. Cook, and R. M. Hochstrasser, “Intense terahertz pulses by four-wave rectification in air,” Opt. Lett. 25, 1210–1212 (2000). [CrossRef]
  20. A. Younus, S. Salort, B. Recur, P. Desbarats, P. Mounaix, J.-P. Caumes, and E. Abraham, “Millimeter wave tomographic scanner for large size opaque object inspection with different refractive index contrasts,” Proc. SPIE 7837, 783709 (2010). [CrossRef]
  21. G. T. Herman, Image Reconstruction From Projections: The Fundamentals of Computerized Tomography (Academic, 1980).
  22. J. Radon, “Uber die Bestimmung von Funktionen durch ihre Integralwerte langs gewisser Mannigfaltigkeiten,” Ber. Ver. Sachs. Akad. Wiss. Leipzig, Math-Phys. Kl 69, 262 (1917).
  23. A. H. Andersen and A. C. Kak, “Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm,” Ultrason. Imag. 6, 81–94 (1984). [CrossRef]
  24. L. A. Shepp and Y. Vardi, “Maximum likelihood reconstruction for emission tomography,” IEEE Trans. Med. Imaging 1, 113–122 (1982). [CrossRef]
  25. H. M. Hudson and R. S. Larkin, “Accelerated image reconstruction using ordered subsets of projection data,” IEEE Trans. Med. Imaging 13, 601–609 (1994). [CrossRef]
  26. B. Recur, A. Younus, S. Salort, P. Mounaix, B. Chassagne, P. Desbarats, J.-P. Caumes, and E. Abraham, “Investigation on reconstruction methods applied to 3D terahertz computed tomography,” Opt. Express 19, 5105–5117 (2011). [CrossRef]
  27. S. Joly, F. Garet, and J.-L. Coutaz, “Accurate determination of the complex refractive index of scattering materials by THz time-domain spectroscopy,” presented at the 3rd EOS Topical Meeting on Terahertz Science and Technology (TST 2012), Prague, Czech Republic, 17–20 June 2012.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (139 KB)     
» Media 2: MOV (1167 KB)     
» Media 3: MOV (1396 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited