OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 28 — Oct. 1, 2012
  • pp: 6745–6752

Using a fuzzy system in the study of the luminescence and potency of neodymium ions

Daniela P. L. Ferreira, Rosana Motta Jafelice, and Elias O. Serqueira  »View Author Affiliations


Applied Optics, Vol. 51, Issue 28, pp. 6745-6752 (2012)
http://dx.doi.org/10.1364/AO.51.006745


View Full Text Article

Enhanced HTML    Acrobat PDF (903 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The processes of energy transfer and diffusion of photons emitted by Nd 3 + ions embedded into a glass sample were investigated. The luminescence resolved in space allowed the observation of the photons’ spatial distribution. In this paper, we propose a fuzzy mathematical model that permits carrying out calculations based on the neighborhood luminescence intensity of the excitation spot laser. This proposed model differs from other well-known ones in the literature because it shows clearly the luminescence intensity profile on the sample surface.

© 2012 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(000.4430) General : Numerical approximation and analysis

ToC Category:
Physical Optics

History
Original Manuscript: March 29, 2012
Revised Manuscript: June 15, 2012
Manuscript Accepted: June 15, 2012
Published: September 25, 2012

Citation
Daniela P. L. Ferreira, Rosana Motta Jafelice, and Elias O. Serqueira, "Using a fuzzy system in the study of the luminescence and potency of neodymium ions," Appl. Opt. 51, 6745-6752 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-28-6745


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Lallier, “Rare-earth-doped glass and LiNbO3 waveguide lasers and optical amplifiers,” Appl. Opt. 31, 5276–5282 (1992). [CrossRef]
  2. D. E. Zelmon, J. M. Northridge, J. J. Lee, K. M. Currin, and D. Perlov, “Optical properties of Nd-doped rare-earth vanadates,” Appl. Opt. 49, 4973–4978 (2010). [CrossRef]
  3. S. S. Badu, P. Badu, C. K. Jayasankar, A. S. Joshi, A. Speghini, and M. Bettinelli, “Laser transition characteristics of Nd3+-doped fluorophosphate laser glasses,” J. Non-Cryst. Solids 353, 1402–1406 (2007). [CrossRef]
  4. M. Jayasimhadri, L. R. Moorthy, R. V. S. S. N. Ravikumar, and A. S. Joshi, “An investigation of the optical properties of Nd3+ ions in alkali tellurofluorophosphate glasses,” Opt. Mater. 29, 1321–1326 (2007). [CrossRef]
  5. R. Balda, R. I. Merino, J. I. Peña, V. M. Orera, and J. Fernándes, “Laser spectroscopy of Nd3+ ions in glasses with the 0.8CaSiO3−0.2Ca3(PO4)2 eutectic composition,” Opt. Mater. 31, 1319–1322 (2009). [CrossRef]
  6. S. Paoloni, J. Hein, T. Topfer, H. G. Walther, R. Sauerbrey, D. Ehrt, and W. Wintzer, “Laser beam induced optical aberrations in phosphate and fluoride phosphate glasses,” Appl. Phys. B 78, 415–419 (2004). [CrossRef]
  7. V. M. Martins, D. N. Messias, N. O. Dantas, and A. M. Neto, “Concentration dependent fluorescence quantum efficiency of neodymium doped phosphate glass matrix,” J. Lumin. 130, 2491–2494 (2010). [CrossRef]
  8. E. O. Serqueira, N. O. Dantas, P. C. Morais, and E. O. Serqueira, “Mean free path for excitation energy migration in Nd3+-doped glasses as a function of concentration,” J. Appl. Phys. 99, 036105 (2006). [CrossRef]
  9. E. O. Serqueira, N. O. Dantas, and P. C. Morais, “Spatial energy transfer in Nd3+-doped glasses as a function of concentration,” J. Non-Cryst. Solids 352, 3642–3646 (2006). [CrossRef]
  10. B. C. Wilson and M. S. Patterson, “The physics of photodynamic therapy,” Phys. Med. Biol. 31, 327–360 (1986). [CrossRef]
  11. A. Ishimaru, “Diffusion of light in turbid material,” Appl. Opt. 28, 2210–2215 (1989). [CrossRef]
  12. J. C. Schotland, “Continuous-wave diffusion imaging,” J. Opt. Soc. Am. A 14, 275–279 (1997). [CrossRef]
  13. L. A. Zadeh, Fuzzy sets,” Inf. Control 8, 338–353 (1965). [CrossRef]
  14. L. C. Barros, R. C. Bassanezi, and M. B. Leite, “The epidemiological models SI with fuzzy parameter of transmission.,” Comput. Math. Appl. 45, 1619–1628 (2003). [CrossRef]
  15. N. Ortega, L. C. Barros, and E. Massad, “Fuzzy gradual rules in epidemiology,” Kybernetes 32, 460–477 (2003). [CrossRef]
  16. R. M. Jafelice, L. C. Barros, R. C. Bassanezi, and F. Gomide, “Fuzzy modeling in asymptomatic HIV virus infected population,” Bull. Math. Biol. 66, 1597–1620 (2004). [CrossRef]
  17. R. M. Jafelice, L. C. Barros, R. C. Bassanezi, and F. Gomide, “Methodology to determine the evolution of asymptomatic HIV population using fuzzy set theory,” Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 13, 39–58 (2005). [CrossRef]
  18. V. Krivan and G. Colombo, “A non-stochastic approach for modeling uncertainty in population dynamics,” Bull. Math. Biol. 60 (1998). [CrossRef]
  19. W. Pedrycz and F. Gomide, An Introduction to Fuzzy Sets: Analysis and Design, (Massachusetts Institute of Technology, 1998).
  20. MATLAB reference, “Fuzzy Logic Toolbox,” http://www.mathworks.com/access/helpdesk/help/toolbox/fuzzy/index.htm .
  21. A. F. G. Monte, J. M. R. Cruz, and P. C. Morais, “An experimental design for microluminescence,” Rev. Sci. Instrum. 68, 3890–3892 (1997). [CrossRef]
  22. M. A. Heald and J. B. Marion, Classical Electromagnetic Radiation (Saunders College, 1995).
  23. D. P. L. Ferreira, “Sistema p-fuzzy Aplicado á Equações Diferenciais Parciais,” Master’s thesis (Federal University of Uberlândia, 2011) (in Portuguese).
  24. L. C. Barros and R. C. Bassanezi, Tópicos de Lógica Fuzzy e Biomatemática (State University of Campinas/Institute of Mathematics, Statistics and Computational Sciences, 2006) (in Portuguese).
  25. F. A. M. Marques, A. F. G. Monte, E. O. Serqueira, P. C. Morais, and N. O. Dantas, “Enhanced spatial energy transfer in Er-doped silica glasses,” Opt. Mater. 32, 1248–1250 (2010). [CrossRef]
  26. N. O. Dantas, Qu Fanyao, A. F. G. Monte, R. S. Silva, and P. C. Morais, “Optical properties of IV–VI quantum dots embedded in glass: size-effects,” J. Non-Cryst. Solids 352, 3525–3529 (2006). [CrossRef]
  27. N. O. Dantas, A. F. G. Monte, Qu Fanyao, R. S. Silva, and P. C. Morais, “Energy transfer in PbS quantum dots assemblies measured by means of spatially resolved photoluminescence,” Appl. Surf. Sci. 238, 209–212 (2004). [CrossRef]
  28. N. S. Pereira, A. F. G. Monte, A. Reis, P. C. Morais, and M. J. A. Sales, “Luminescence and energy transfer from açai oil in polystyrene matrix,” Opt. Mater. 32, 1134–1138 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited