OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 29 — Oct. 10, 2012
  • pp: 6917–6925

Comprehensive characterization of broadband ultralow reflectance of a porous nickel–phosphorus black surface by numerical simulation

Kuniaki Amemiya, Daiji Fukuda, Takayuki Numata, Minoru Tanabe, and Yoshiro Ichino  »View Author Affiliations

Applied Optics, Vol. 51, Issue 29, pp. 6917-6925 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1191 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Porous nickel–phosphorus (NiP) black surfaces exhibit excellent low reflectance in the visible and near-IR regions. Through use of a model of the surface morphology and composition, the reflectance was numerically simulated by a three-dimensional finite-difference time-domain method to determine the origin of the low reflectance. In agreement with experimental results, the simulations showed a spectrally flat, quite low reflectance of <0.1% over the entire visible–near-IR region under certain conditions. The reflectance depended strongly on the thickness of the black nickel oxide layer and the aspect ratio of the three-dimensional surface morphology. A method of validating the reflectance of porous NiP black surfaces is suggested.

© 2012 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(120.5630) Instrumentation, measurement, and metrology : Radiometry
(120.5700) Instrumentation, measurement, and metrology : Reflection
(160.4670) Materials : Optical materials

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: July 24, 2012
Manuscript Accepted: August 20, 2012
Published: October 3, 2012

Kuniaki Amemiya, Daiji Fukuda, Takayuki Numata, Minoru Tanabe, and Yoshiro Ichino, "Comprehensive characterization of broadband ultralow reflectance of a porous nickel–phosphorus black surface by numerical simulation," Appl. Opt. 51, 6917-6925 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. N. Kumar, L. K. Malhotra, and K. L. Chopra, “Low-cost electroless nickel black coatings for photothermal conversion,” Sol. Energy Mater. 3, 519–532 (1980). [CrossRef]
  2. V. V. Iyengar, B. K. Nayak, and M. C. Gupta, “Ultralow reflectance metal surfaces by ultrafast laser texturing,” Appl. Opt. 49, 5983–5988 (2010). [CrossRef]
  3. T. Hwang, A. Vorobyev, and C. Guo, “Formation of solar absorber surface on nickel with femtosecond laser irradiation,” Appl. Phys. A Mater. Sci. Process. 108, 299–303 (2012). [CrossRef]
  4. M. Lira-Cantu, A. M. Sabio, A. Brustenga, and P. Gomez-Romero, “Electrochemical deposition of black nickel solar absorber coatings on stainless steel AISI316L for thermal solar cells,” Sol. Energy Mater. Sol. Cells 87, 685–694 (2005). [CrossRef]
  5. M. Endo and T. Inoue, “A double calorimeter for 10 W level laser power measurements,” IEEE Trans. Instrum. Meas. 54, 688–691 (2005). [CrossRef]
  6. K. Amemiya, S. Mukai, Y. Ichino, T. Zama, S. Kück, B. Hartree, and A. Deadman, “Final report on APMP.PR-S4: comparison of fiber optic power meter responsivity,” Metrologia 48, 02004 (2011). [CrossRef]
  7. J. Lehman, E. Theocharous, G. Eppeldauer, and C. Pannell, “Gold-black coatings for freestanding pyroelectric detectors,” Meas. Sci. Technol. 14, 916–922 (2003). [CrossRef]
  8. J. H. Lehman, C. Engtrakul, T. Gennett, and A. C. Dillon, “Single-wall carbon nanotube coating on a pyroelectric detector,” Appl. Opt. 44, 483–488 (2005). [CrossRef]
  9. J. H. Lehman, R. Deshpande, P. Rice, B. To, and A. C. Dillon, “Carbon multi-walled nanotubes grown by HWCVD on a pyroelectric detector,” Infrared Phys. Technol. 47, 246–250 (2006). [CrossRef]
  10. Z. P. Yang, L. J. Ci, J. A. Bur, S. Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8, 446–451 (2008). [CrossRef]
  11. E. Lidorikis and A. C. Ferrari, “Photonics with multiwall carbon nanotube arrays,” ACS Nano 3, 1238–1248 (2009). [CrossRef]
  12. K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106, 6044–6047 (2009). [CrossRef]
  13. H. Bao, X. Ruan, and T. S. Fisher, “Optical properties of ordered vertical arrays of multi-walled carbon nanotubes from FDTD simulations,” Opt. Express 18, 6347–6359 (2010). [CrossRef]
  14. Y. Liu, D. Beckett, and D. Hawthorne, “Effect of heat treatment, top coatings and conversion coatings on the corrosion properties of black electroless Ni-P films,” Appl. Surf. Sci. 257, 4486–4494 (2011). [CrossRef]
  15. R. J. C. Brown, P. J. Brewer, and M. J. T. Milton, “The physical and chemical properties of electroless nickel–phosphorus alloys and low reflectance nickel–phosphorus black surfaces,” J. Mater. Chem. 12, 2749–2754 (2002). [CrossRef]
  16. S. Kodama, M. Horiuchi, T. Kunii, and K. Kuroda, “Ultra-black nickel–phosphorus alloy optical absorber,” IEEE Trans. Instrum. Meas. 39, 230–232 (1990). [CrossRef]
  17. G. Cui, N. Li, D. Li, J. Zheng, and Q. Wu, “The physical and electrochemical properties of electroless deposited nickelnickel–phosphorusphosphorus black coatings,” Surf. Coat. Technol. 200, 6808–6814 (2006). [CrossRef]
  18. V. Saxena, R. U. Rani, and A. K. Sharma, “Studies on ultra high solar absorber black electroless nickel coatings on aluminum alloys for space application,” Surf. Coat. Technol. 201, 855–862 (2006). [CrossRef]
  19. Y. F. Wang, W. G. Fu, M. Feng, and X. W. Cao, “Investigation of the structure and the physical properties of nickel–phosphorus ultra-black surfaces,” Appl. Phys. A Mater. Sci. Process. 90, 549–553 (2008). [CrossRef]
  20. C. Johnson, “Black electroless nickel surface morphologies with extremely high light absorption capacity,” Metal Finish. 78, 21–24 (1980).
  21. P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62, 243–249 (1987). [CrossRef]
  22. Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates,” Opt. Lett. 24, 1422–1424 (1999). [CrossRef]
  23. A. Deinega, I. Valuev, B. Potapkin, and Y. Lozovik, “Minimizing light reflection from dielectric textured surfaces,” J. Opt. Soc. Am. A 28, 770–777 (2011). [CrossRef]
  24. R. N. Duncan, “The metallurgical structure of electroless nickel deposits: effect on coating properties,” Plating Surf. Finish. 83, 65–69 (1996).
  25. M. Wierzbicka and A. Malecki, “The detailed mechanism of oxidation of Ni–P alloys,” Therm. J. Anal. Calorim. 55, 981–987 (1999). [CrossRef]
  26. H. Bao and X. Ruan, “Optical absorption enhancement in disordered vertical silicon nanowire arrays for photovoltaic applications,” Opt. Lett. 35, 3378–3380 (2010). [CrossRef]
  27. L. Yang, Q. Feng, B. Ng, X. Luo, and M. Hong, “Hybrid moth-eye structures for enhanced broadband antireflection characteristics,” Appl. Phys. Express 3, 102602 (2010). [CrossRef]
  28. A. Taflove and S. C. Hagness, Computational Electrodynamics (Artech House, 1995).
  29. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010). [CrossRef]
  30. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998). [CrossRef]
  31. T. D. Kang, H. S. Lee, and H. Lee, “Optical properties of black NiO and CoO single crystals studied with spectroscopic ellipsometry,” Korean J. Phys. Soc. 50, 632–637 (2007). [CrossRef]
  32. E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1998), Vol. 3.
  33. E. B. Grann, M. G. Moharam, and D. A. Pommet, “Optimal design for antireflective tapered two-dimensional subwavelength grating structures,” J. Opt. Soc. Am. A 12, 333–339 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited