OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 29 — Oct. 10, 2012
  • pp: 6945–6951

Application of effective medium theory with consideration of island shapes to interpret optical properties of discontinuous Pt films

P. Biegański, E. Dobierzewska-Mozrzymas, and L. Kępiński  »View Author Affiliations

Applied Optics, Vol. 51, Issue 29, pp. 6945-6951 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1098 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Pt films with mass thicknesses ranging from 0.6 to 3.9 nm were evaporated onto quartz-glass substrates under vacuum conditions (p104Pa) with evaporation rate 0.01 to 0.2mm/s. The transmittance spectra were measured in the wavelength range from 220 to 2500 nm. The microstructures were examined by a transmission electron microscope. The statistical distributions of island areas and the histograms of the fixed ratios of the semiaxes for ellipsoids were determined. It has been found that the transmittance spectra for the films with coverage coefficient 0.2p0.6 exhibit minima that shift with an increase in the coverage coefficient. To interpret the transmittance spectra of the films, the Maxwell-Garnett theory, which takes into account the island shapes, was used. Measured and calculated spectra were compared. For low coverage coefficients there is a quantitative agreement between the experimental and the calculated results.

© 2012 Optical Society of America

OCIS Codes
(310.0310) Thin films : Thin films
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Thin Films

Original Manuscript: February 14, 2012
Manuscript Accepted: August 20, 2012
Published: October 4, 2012

P. Biegański, E. Dobierzewska-Mozrzymas, and L. Kępiński, "Application of effective medium theory with consideration of island shapes to interpret optical properties of discontinuous Pt films," Appl. Opt. 51, 6945-6951 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Vol. 25 of Springer Series in Materials Science (Springer, 1995).
  2. V. M. Shalaev, ed., Optical Properties of Nanostructured Random Media (Springer-Verlag, 2002).
  3. L. Ward, ed., The Optical Constants of Bulk Materials and Film (Institute of Physics, 1994).
  4. D. Bedeaux and J. Vlieger, “A statistical theory for the dielectric properties of thin island films—application and comparison with experimental results,” Thin Solid Films 102, 265–281 (1983). [CrossRef]
  5. P. Sheng, “Theory for the dielectric function of granular composite media,” Phys. Rev. Lett. 45, 60–63 (1980). [CrossRef]
  6. R. Doremus, “Optical absorption of island films of noble metals: wavelength of the plasma absorption band,” Thin Solid Films 326, 205–210 (1998). [CrossRef]
  7. E. Dobierzewska-Mozrzymas and P. Biegański, “Optical properties of discontinuous copper films,” Appl. Opt. 32, 2345–2350 (1993). [CrossRef]
  8. R. Ruppin, “Evaluation of extended Maxwell-Garnett theories,” Opt. Commun. 182, 273–279 (2000). [CrossRef]
  9. S. Berthier and J. Lafait, “Compared optical properties of noble and transition metal-dielectric granular films,” J. Physique 47, 249–257 (1986). [CrossRef]
  10. J. C. Maxwell Garnett, “Colours in metal glasses and in metallic films,” Phil. Trans. R. Soc. A 203, 385–420 (1904). [CrossRef]
  11. J. C. Maxwell Garnett, “Colours in metal glasses, in metallic films, and in metallic solutions. II,” Phil. Trans. R. Soc. A 205, 237–288 (1906). [CrossRef]
  12. S. Norrman, T. Andersson, C. G. Granqvist, and O. Hunderi, “Optical properties of discontinuous gold films,” Phys. Rev. B 18, 674–695 (1978). [CrossRef]
  13. R. R. W. Cohen, G. D. Cody, M. D. Coutts, and B. Abeles, “Optical properties of granular silver and gold films,” Phys. Rev. B 8, 3689–3701 (1973). [CrossRef]
  14. D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Ann. Phys. 416, 636–664 (1935). [CrossRef]
  15. O. Hunderi, “Influence of grain boundaries and lattice defects on the optical properties of some metals,” Phys. Rev. B 7, 3419–3429 (1973). [CrossRef]
  16. E. Dobierzewska-Mozrzymas, J. Peisert, and P. Biegański, “Optical properties of gold and aluminum island films with regard to grain size and interisland spacing distributions,” Appl. Opt. 27, 181–185 (1988). [CrossRef]
  17. L. D. Landau and E. M. Lifschitz, Electromdynamique des milieux continues (Mir, 1969), p. 35.
  18. C. G. Granqvist and O. Hunderi, “Optical properties of ultrafine gold particles,” Phys. Rev. B 16, 3513–3534 (1977). [CrossRef]
  19. J. P. Bouchaud, “More Lévy distributions in physics,” in Proceedings of the International Workshop on Lévy Flights and Related Topics in Physics, M. F. Shlesinger, G. M. Zaslavsky, and U. Frisch, eds., Vol. 450 of Lecture Notes in Physics (Springer, 1995), pp. 237–250.
  20. E. Dobierzewska-Mozrzymas, P. Biegański, E. Pieciul, and J. Wójcik, “Statistical description of systems on the basis of the Mandelbrot law: discontinuous metal films on dielectric substrates,” J. Phys: Condens. Matter 11, 5561–5568 (1999). [CrossRef]
  21. E. Dobierzewska-Mozrzymas, G. Szymczak, P. Biegański, and E. Pieciul, “Lévy’s distributions for statistical description of fractal structures; discontinuous metal films on dielectric substrates,” Physica B 337, 79–86 (2003). [CrossRef]
  22. S. H. Kim, K. C. Kim, Y. S. Kim, and H. J. Kim, “Abnormal optical changes with the formation of Pt nanoclusters,” Curr. App. Phys. 6, 1036–1039 (2006). [CrossRef]
  23. E. Dobierzewska-Mozrzymas, P. Biegański, and E. Pieciul, “The optical properties of Pt discontinuous films,” Proc. SPIE 7141, 71411U (2008). [CrossRef]
  24. O. S. Heavens, Optical Properties of Thin Solid Films (Butterworth, 1955), p. 77.
  25. C. Bertoni, D. E. Gallardo, and S. Dunn, “Electroforming processes for platinum nanoisland thin films,” Thin Solid Films 495, 29–35 (2006). [CrossRef]
  26. F. J. W-M. Leong, M. Brady, and J. O. McGee, “Correction of uneven illumination (vignetting) in digital microscopy images,” J. Clin. Pathol. 56, 619–621 (2003). [CrossRef]
  27. C. A. Neugebauer, “Condensation, nucleation and growth of thin films,” in Handbook of Thin Film Technology, L. I. Maissel and R. Glang, eds. (McGraw-Hill, 1983), Chap. 8.
  28. M. Kawamura, T. Mashima, Y. Abe, and K. Sasaki, “Formation of ultra-thin continuous Pt and Al films by RF sputtering,” Thin Solid Films 377–388, 537–542 (2000). [CrossRef]
  29. E. Dobierzewska-Mozrzymas, E. Pieciul, P. Biegański, and G. Szymczak, “Conduction mechanisms in discontinuous Pt films,” Cryst. Res. Technol. 36, 1137–1144 (2001). [CrossRef]
  30. A. I. Rahachou and I. V. Zozulenko, “Light propagation in nanorod arrays,” J. Opt. A 9, 265–270 (2007). [CrossRef]
  31. M. Meier, and A. Wokaun, “Enhanced fields on large metal particles: dynamic depolarization,” Opt. Lett. 8, 581–583 (1983). [CrossRef]
  32. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Comm. 220, 137–141 (2003). [CrossRef]
  33. S. G. Moiseev, “Active Maxwell-Garnett composite with the unit refractive index,” Physica B 405, 3042 (2010). [CrossRef]
  34. Y. Yagil, P. Gadenne, Ch. Yulien, and G. Deutscher, “Optical properties of thin semicontinuous gold films over a wavelength range of 2.5 to 500 μm,” Phys. Rev. B 46, 2503–2511 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited