OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 29 — Oct. 10, 2012
  • pp: 6952–6961

Dual-grating confocal-rainbow volume holographic imaging system designs for high depth resolution

Erich E. de Leon, Jonathan W. Brownlee, Paul Gelsinger-Austin, and Raymond K. Kostuk  »View Author Affiliations


Applied Optics, Vol. 51, Issue 29, pp. 6952-6961 (2012)
http://dx.doi.org/10.1364/AO.51.006952


View Full Text Article

Enhanced HTML    Acrobat PDF (1031 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Confocal microscopy rejects out-of-focus light from the object by scanning a pinhole through the image and reconstructing the image point by point. Volume holographic imaging systems with bright-field illumination have been proposed as an alternative to conventional confocal-type microscopes that does not require scanning of a pinhole or a slit. However, due to wavelength-position degeneracy of the hologram, the high Bragg selectivity of the volume hologram is not utilized and system performance is not optimized. Confocal-rainbow illumination has been proposed as a means to remove the degeneracy and improve optical sectioning in these systems. In prior work, two versions of this system were illustrated: the first version had a separate illumination and imaging grating and the second used a single grating to disperse the incident light and to separate wavelengths in the imaging path. The initial illustration of the dual-grating system has limited depth resolution due to the low selectivity of the illumination grating. The initial illustration of the single-grating system has high depth resolution but does not allow optimization of the illumination path and requires high optical quality of the holographic filters. In this paper we consider the design and tolerance requirements of the dual-grating system for high depth resolution and demonstrate the results with an experimental system. An experimental system with two 1.8 mm thick planar holograms achieved a depth resolution of 7 μm with a field of view of 1.9 mm and a hologram dispersion matching tolerance of ±0.008°.

© 2012 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(090.2890) Holography : Holographic optical elements
(110.0180) Imaging systems : Microscopy
(180.1790) Microscopy : Confocal microscopy
(220.3620) Optical design and fabrication : Lens system design
(220.2945) Optical design and fabrication : Illumination design

ToC Category:
Holography

History
Original Manuscript: June 6, 2012
Revised Manuscript: September 4, 2012
Manuscript Accepted: September 4, 2012
Published: October 5, 2012

Citation
Erich E. de Leon, Jonathan W. Brownlee, Paul Gelsinger-Austin, and Raymond K. Kostuk, "Dual-grating confocal-rainbow volume holographic imaging system designs for high depth resolution," Appl. Opt. 51, 6952-6961 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-29-6952

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited