OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 29 — Oct. 10, 2012
  • pp: 6984–6996

Tunable filter-based multispectral imaging for detection of blood stains on construction material substrates. Part 1. Developing blood stain discrimination criteria

Suwatwong Janchaysang, Sarun Sumriddetchkajorn, and Prathan Buranasiri  »View Author Affiliations

Applied Optics, Vol. 51, Issue 29, pp. 6984-6996 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2025 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this article, we establish blood stain detection criteria that are less substrate dependent for use in a liquid crystal tunable filter-based multispectral-imaging system. Kubelka–Munk (KM) theory is applied to transform the acquired stains’ reflectance spectra into the less substrate dependent spectra. Chosen spectral parameters are extracted from the KM absorbance spectra of several stain samples on several substrates. Blood discrimination criteria based upon those spectral parameters are then established from empirical data, tested, and refined. In our newly invented method, instead of introducing conventional contrast enhancement on the blood stain image, blood stain determination is executed mathematically via Boolean logic, resulting in more discriminative blood stain identification. This proposed approach allows for nondestructive, quick, discriminative, and easy-to-improve presumptive blood stain detection. Experimental results confirm that our blood stain discrimination criteria can be used to locate blood stains on several construction materials with high precision. True positive rates (sensitivity) from 0.60 to 0.95 are achieved depending on blood stain faintness and substrate types. Also, true negative rates (specificity) between 0.55 and 0.96 and identification time of 4–5 min are accomplished, respectively. The established blood stain discrimination criteria will be incorporated in a real blood stain detection system in part 2 of this article, where system design and considerations as well as speed issues are discussed.

© 2012 Optical Society of America

OCIS Codes
(100.2960) Image processing : Image analysis
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.4630) Instrumentation, measurement, and metrology : Optical inspection
(150.1488) Machine vision : Calibration
(110.4234) Imaging systems : Multispectral and hyperspectral imaging

ToC Category:
Imaging Systems

Original Manuscript: May 22, 2012
Revised Manuscript: August 9, 2012
Manuscript Accepted: August 10, 2012
Published: October 5, 2012

Suwatwong Janchaysang, Sarun Sumriddetchkajorn, and Prathan Buranasiri, "Tunable filter-based multispectral imaging for detection of blood stains on construction material substrates. Part 1. Developing blood stain discrimination criteria," Appl. Opt. 51, 6984-6996 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. C. Ponce and A. C. Pascual, “Critical revision of presumptive tests bloodstains,” Forensic Sci. Commun. 1, 1–15 (1999).
  2. M. A. Cox, “A study of the sensitivity and specificity of four presumptive tests for blood,” J. Forensic Sci. 36, 1503–1511 (1991).
  3. A. M. Gross, K. A. Harris, and G. L. Kaldun, “The effect of luminol on presumptive tests and DNA analysis using the polymerase chain reaction,” J. Forensic Sci. 44, 837–840 (1999).
  4. N. Vandenberg and R. A. van Oorschot, “The use of Polilight in the detection of seminal fluid, saliva, and bloodstains and comparison with conventional chemical-based screening tests,” J. Forensic Sci. 51, 361–370 (2006). [CrossRef]
  5. W. C. Lee and B. E. Khoo, “Forensic light sources for detection of biological evidences in crime scene investigation: a review,” Malays. J. Forensic Sci. 1, 17–28 (2010).
  6. A. C. Lin, H. M. Hsieh, L. C. Tsai, A. Linacre, and J. C. Lee, “Forensic applications of infrared imaging for the detection and recording of latent evidence,” J. Forensic Sci. 52, 1148–1150 (2007). [CrossRef]
  7. M. Perkins, “The application of infrared photography in bloodstain pattern documentation of clothing,” J. Forensic Sci. 55, 1–9 (2005).
  8. H. Brooke, M. R. Baranowski, J. N. McCutcheon, S. L. Morgan, and M. L. Myrick, “Multimode imaging in the thermal infrared for chemical contrast enhancement. Part 1: methodology,” Anal. Chem. 82, 8412–8420 (2010). [CrossRef]
  9. H. Brooke, M. R. Baranowski, J. N. McCutcheon, S. L. Morgan, and M. L. Myrick, “Multimode imaging in the thermal infrared for chemical contrast enhancement. Part 2: simulation driven design,” Anal. Chem. 82, 8421–8426 (2010). [CrossRef]
  10. H. Brooke, M. R. Baranowski, J. N. McCutcheon, S. L. Morgan, and M. L. Myrick, “Multimode imaging in the thermal infrared for chemical contrast enhancement. Part 3: visualizing blood on fabrics,” Anal. Chem. 82, 8427–8431 (2010). [CrossRef]
  11. S. Sumriddetchkajorn and Y. Intaravanne, “A hyperspectral imaging-based credit card verifier structure with adaptive learning,” Appl. Opt. 47, 6594–6600 (2008). [CrossRef]
  12. S. Sumriddetchkajorn and Y. Intaravanne, “Data-nonintrusive photonics-based credit card verifier with a low noise rejection rate,” Appl. Opt. 49, 764–771 (2010). [CrossRef]
  13. S. Sumriddetchkajorn, K. Suwansukho, and P. Buranasiri, “Two-wavelength spectral image-based Thai rice breed identification,” Proc. SPIE 7715, 77150I (2010). [CrossRef]
  14. K. Suwansukho, S. Sumriddetchkajorn, and P. Buranasiri, “Demonstration of a single-wavelength spectral-imaging-based Thai jasmine rice identification,” Appl. Opt. 50, 4024–4030 (2011). [CrossRef]
  15. Y. Intaravanne, S. Sumriddetchkajorn, and J. Nukeaw, “Cell phone-based two-dimensional spectral analysis for banana ripeness estimation,” Sens. Actuators B 168, 390–394 (2012). [CrossRef]
  16. J. H. Wagner, “Applications of UV-visible spectral imaging in forensic science,” Ph.D. dissertation (University Of Auckland, 2008).
  17. G. M. Miskelly and J. H. Wagner, “Using spectral information in forensic imaging,” Forensic Sci. Int. 155, 112–118 (2005). [CrossRef]
  18. N. Rajaram, A. Gopal, X. J. Zhang, and J. W. Tunnell, “Experimental validation of the effects of microvasculature pigment packaging on in vivo diffuse reflectance spectroscopy,” Lasers Surg Med. 42, 680–688 (2010). [CrossRef]
  19. http://www.chemimage.com/docs/product.../CI-productsheet-CONDOR.pdf , “Condor Wide-field hyperspectral imaging system,” ChemImage product sheet PSREV005 (2010).
  20. https://www.chemimage.com/docs/application-notes/forensics/CI-appnote-Visualization-of-Bloodstains.pdf , “Hyperspectral imaging enables straightforward visualization of bloodstains,” ChemImage Application note, ANREV002 (2010).
  21. http://www.chemimage.com/news/newsletter/forensic_focus/november2010.aspx , “Hypserspectral imaging: a high-contrast alternative to visualizing blood spatter and stains,” Forensic Focus E-Newsletter 11 (2010).
  22. http://www.chemimage.com/products/instrumentation/examiner/ , “HSI Examiner 1000,” ChemImage product sheet PSREV001 (2012).
  23. S. Janchaysang, S. Sumriddetchkajorn, and P. Buranasiri, “Tunable filter-based multispectral imaging for detection of blood stains on construction material substrates. Part 2. Realization of rapid blood stain detection,” Appl. Opt. 51, xx–xx (2012).
  24. W. G. Zijlstra and A. Buursma, “Spectrophotometry of hemoglobin: absorption spectra of bovine oxyhemoglobin, deoxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Comp. Biochem. Physiol. B 118, 743–749 (1997). [CrossRef]
  25. E. Pirard, “Multispectral imaging of ore minerals in optical microscopy,” Mineral. Mag. 68, 323–333 (2004). [CrossRef]
  26. R. Shogenji, Y. Kitamura, K. Yamada, S. Miyatake, and J. Tanida, “Multispectral imaging using compact compound optics,” Opt. Express 12, 1643–1655 (2004). [CrossRef]
  27. J. M. Medina, L. M. Pereira, H. T. Correia, and S. Nascimento, “Hyperspectral optical imaging of human iris in vivo: characteristics of reflectance spectra,” J. Biomed. Opt. 16, 076001 (2011). [CrossRef]
  28. P. Kubelka, “New contributions to the optics of intensely light scattering materials. Part I,” J. Opt. Soc. Am. 38, 448–457 (1948). [CrossRef]
  29. M. J. C. van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, and W. M. Star, “Skin optics,” IEEE Trans Biomed. Eng. 36, 1146–1154 (1989). [CrossRef]
  30. W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990). [CrossRef]
  31. M. M. Lana, M. Hogenkamp, and R. B. M. Koehorst, “Application of Kubelka–Munk analysis to the study of translucency in fresh-cut tomato,” Innov. Food Sci. Emerg. Technol. 7, 302–308 (2006). [CrossRef]
  32. L. M. Schabbach, F. Bondioli, and M. C. Fredel, “Colouring of opaque ceramic glaze with zircon pigments: formulation with simplified Kubelka–Munk model,” J. Eur. Ceram. Soc. 31, 659–664 (2011). [CrossRef]
  33. S. Shibusawa, “On-line real time soil sensor,” in Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (2003), pp. 1061–1066.
  34. L. Yang, “Characterization of inks and ink application for ink-jet printing: model and simulation,” J. Opt. Soc Am. A 20, 1149–1154 (2003). [CrossRef]
  35. R. Berns, J. Kreuger, and M. Swicklik, “Multiple pigment selection for in painting using visible reflectance spectrophotometry,” Stud. Conserv. 47, 46 (2002). [CrossRef]
  36. R. S. Berns, “Spectral modeling of a dye diffusion thermal transfer printer,” J. Electron. Imaging 2, 359–369(1993). [CrossRef]
  37. R. H. Bremmer, A. Nadort, T. G. van Leeuwen, M. J. van Gemert, and M. C. Aalders, “Age estimation of blood stains by hemoglobin derivative determination using reflectance spectroscopy,” Forensic Sci. Int. 206, 166–171(2011). [CrossRef]
  38. W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-Van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37, 1633–1638 (1991).
  39. T. Asakura, K. Minakata, K. Adachi, M. O. Russell, and E. Schwartz, “Denatured hemo-globin in sickle erythrocytes,” J. Clin. Invest. 59, 633–640 (1977). [CrossRef]
  40. http://en.wikipedia.org/wiki/Sensitivity_and_specificity (March 2012).
  41. D. R. Busch, W. Guo, R. Choe, T. Durduran, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, B. J. Czerniecki, J. Tchou, A. DeMichele, M. E. Putt, and A. G. Yodh, “Computer aided automatic detection of malignant lesions in diffuse optical mammography,” Med. Phys. 37, 1840–1849 (2010). [CrossRef]
  42. M. U. Akram, A. Tariq, M. A. Anjum, and M. Y. Javed, “Automated detection of exudates in colored retinal images for diagnosis of diabetic retinopathy,” Appl. Opt. 51, 4858–4866 (2012). [CrossRef]
  43. M. D. Adamson and S. J. Rehse, “Detection of trace Al in model biological tissue with laser-induced breakdown spectroscopy,” Appl. Opt. 46, 5844–5852 (2007). [CrossRef]
  44. I. Leonard, A. Alfalou, and C. Brosseau, “Spectral optimized asymmetric segmented phase-only correlation filter,” Appl. Opt. 51, 2638–2650 (2012). [CrossRef]
  45. M. Amini, “Novel design of an optical probe for detecting perfusion changes in Buccal tissue,” IEEE Sens. J. 12, 1861–1867 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited