OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 29 — Oct. 10, 2012
  • pp: 7016–7024

Optical bistability in fiber ring resonator containing an erbium doped fiber amplifier and quantum dot doped fiber saturable absorber

Sara Tofighi, Somayeh Safari Farshemi, Batool Sajjad, Fatemeh Shahshahani, and Ali Reza Bahrampour  »View Author Affiliations


Applied Optics, Vol. 51, Issue 29, pp. 7016-7024 (2012)
http://dx.doi.org/10.1364/AO.51.007016


View Full Text Article

Enhanced HTML    Acrobat PDF (599 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper we study the optical bistability in a double coupler fiber ring resonator which consists of an erbium doped fiber amplifier (EDFA) in half part of the fiber ring and a quantum dot doped fiber (QDF) saturable absorber in the other half. The bistability is provided by the QDF section of the ring resonator. The EDFA is employed to reduce the switching power. The transmitted and reflected bistability characteristics are investigated. It is shown that the switching power for this new bistable device is less than 10 mW.

© 2012 Optical Society of America

OCIS Codes
(190.1450) Nonlinear optics : Bistability
(230.2285) Optical devices : Fiber devices and optical amplifiers

ToC Category:
Optical Devices

History
Original Manuscript: July 17, 2012
Revised Manuscript: September 5, 2012
Manuscript Accepted: September 5, 2012
Published: October 5, 2012

Citation
Sara Tofighi, Somayeh Safari Farshemi, Batool Sajjad, Fatemeh Shahshahani, and Ali Reza Bahrampour, "Optical bistability in fiber ring resonator containing an erbium doped fiber amplifier and quantum dot doped fiber saturable absorber," Appl. Opt. 51, 7016-7024 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-29-7016


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. R. Bahrampour, S. S. Zakeri, S. M. A. Mirzaee, Z. Ghaderi, and F. Farman, “All-optical set-reset flip-flop based on frequency bistability in semiconductor microring lasers,” Opt. Commun. 282, 2451–2456 (2009). [CrossRef]
  2. A. R. Bahrampour, M. Karimi, M. J. Abolfazli Qamsari, H. Rooholamini Nejad, and S. Keyvaninia, “All-optical set reset flip flop based on the passive microring-resonator bistability,” Opt. Commun. 281, 5104–5113 (2008). [CrossRef]
  3. W. F. Sharfin and M. Dagenais, “High contrast 1.3 μm optical AND gate with gain,” Appl. Phys. Lett. 48, 1510–1512 (1986). [CrossRef]
  4. B. Li, M. I. Memon, G. Mezosi, Z. Wang, M. Sorel, and S. Yu, “All-optical digital logic gates using bistable semiconductor ring lasers,” J. Opt. Commun. 30, 190–194 (2009). [CrossRef]
  5. V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover, and P. T. Ho, “Optical signal processing using nonlinear semiconductor microring resonators,” IEEE J. Sel. Top. Quantum Electron. 8, 705–713 (2002). [CrossRef]
  6. M. Soljačić, M. Ibanescu, C. Luo, S. G. Johnson, S. Fan, Y. Fink, and J. D. Joannopoulos, “All-optical switching using optical bistability in non-linear photonic crystals,” Proc. SPIE 5000, 200–214 (2003). [CrossRef]
  7. A. M. Kaplan, G. P. Agrawal, and D. N. Maywar, “All-optical flip-flop operation of VCSOA,” Electron. Lett. 45, 127–128 (2009). [CrossRef]
  8. D. N. Maywar, G. P. Agrawal, and Y. Nakano, “All-optical hysteresis control by means of cross-phase modulation in semiconductor optical amplifiers,” J. Opt. Soc. Am. B 18, 1003–1013 (2001). [CrossRef]
  9. S. Djabi, H. Boudoukha, and S. Meguellati, “Analytical model for optical bistability in laser with saturable absorber,” J. Nonlinear Opt. Phys. Mater. 20, 389–395 (2011). [CrossRef]
  10. S. Djabi, H. Boudoukha, and M. Djabi, “Optical bistability in a trimodal laser containing a saturable absorber,” ARPN J. Eng. Appl. Sci. 2, 14–21 (2007).
  11. C. Li, J. F. Wu, and W. C. Xu, “Influence of two-photon absorption on bistable switching in a silicon photonic crystal microcavity,” Opt. Commun. 283, 2957–2960 (2010). [CrossRef]
  12. F. Treussart, V. S. Ilchenko, J. F. Roch, J. Hare, V. Lefèvre-Seguin, J. M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1, 235–238 (1998).
  13. F. Zhou, Y. Liu, Z. Y. Li, and Y. Xia, “Analytical model for optical bistability in nonlinear metal nanoantennae involving Kerr materials,” Opt. Express 18, 13337–13344 (2010). [CrossRef]
  14. G. Lenz, J. Zimmerman, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spälter, R. E. Slusher, S. W. Cheong, J. S. Sanghera, and I. D. Aggarwal, “Large Kerr effect in bulk Se-based chalcogenide glasses,” Opt. Lett. 25, 254–256 (2000). [CrossRef]
  15. J. M. Harbold, F. Ö. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge–As–Se and Ge–As–S–Se glasses for all-optical switching,” IEEE Photon. Technol. Lett. 14, 822–824 (2002). [CrossRef]
  16. J. M. Ward, D. G. O’Shea, B. J. Shortt, and S. N. Chormaic, “Optical bistability in Er–Yb codoped phosphate glass microspheres at room temperature,” J. Appl. Phys. 102, 023104 (2007). [CrossRef]
  17. X. Ren, J. Song, Y. Guo, G. Yang, and Y. Huang, “Interesting nonlinear effects in Er+3–Yb+3 co doped fibers,” Optoelectronics, Proceedings Sixth Chinese Symposium (2003).
  18. Z. Zang, “Numerical analysis of optical bistability based on fiber Bragg grating cavity containing a high nonlinearity doped-fiber,” Opt. Commun. 285, 521–526 (2012). [CrossRef]
  19. Z. Zang and Y. Zhang, “Low-switching power (<45  mW) optical bistability based on optical nonlinearity of ytterbium-doped fiber with a fiber Bragg grating pair,” J. Mod. Opt. 59, 161–165 (2012). [CrossRef]
  20. Z. Zang and Y. Zhang, “Analysis of optical switching in a Yb3+-doped fiber Bragg grating by using self-phase modulation and cross-phase modulation,” Appl. Opt. 51, 3424–3430 (2012). [CrossRef]
  21. Z. Zang and W. Yang, “Theoretical and experimental investigation of all-optical switching based on cascaded LPFGs separated by an erbium-doped fiber,” J. Appl. Phys. 109, 103106 (2011). [CrossRef]
  22. H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express 17, 17630–17635 (2009). [CrossRef]
  23. H. Zhang, Q. Bao, D. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009). [CrossRef]
  24. G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, M. Zdrojek, M. Holdynski, P. Paletko, J. Boguslawski, L. Lipinska, and K. M. Abramski, “Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser,” Opt. Express 20, 19463–19467 (2012). [CrossRef]
  25. Y. D. Jeong, J. S. Cho, Y. H. Won, H. J. Lee, and H. Yoo, “All-optical flip-flop based on the bistability of injection locked Fabry-Perot laser diode,” Opt. Express 14, 4058–4063 (2006). [CrossRef]
  26. P. A. Costanzo-Caso, Y. Jin, S. Granieri, and A. Siahmakoun, “Optical bistability in a nonlinear SOA-based fiber ring resonator,” Proc. SPIE 7797, 779712 (2010). [CrossRef]
  27. L. Wei, S. Song, and Y. N. Wang, “Influence of nonlinear absorption effects on optical bistability in semiconductor ring resonators,” Opt. Laser Technol. 37, 432–437 (2005). [CrossRef]
  28. J. Shao, S. Li, Q. Shen, Z. Wu, Z. Cao, and J. Gu, “Experiment and theoretical explanation of optical bistability in a single erbium-doped fiber ring laser,” Opt. Express 15, 3673–3679 (2007). [CrossRef]
  29. L. Luo and P. L. Chu, “Optical bistability in a coupled fiber ring resonator system with nonlinear absorptive medium,” Opt. Commun. 129, 224–228 (1996). [CrossRef]
  30. C. Li, N. Dou, and P. P. Yupapin, “Milliwatt and nanosecond all-optical switching in a double-coupler ring resonator containing an EDFA,” J. Opt. A 8, 728–732 (2006). [CrossRef]
  31. N. Dou and C. Li, “Optical bistability in fiber ring resonator containing an EDFA,” Opt. Commun. 281, 2238–2242 (2008). [CrossRef]
  32. F. Pang, X. Su, H. Guo, J. Yan, J. Wang, X. Zeng, Z. Chen, and T. Wang, “A PbS quantum dots fiber amplifier excited by evanescent wave,” Opt. Express 18, 14024–14030 (2010). [CrossRef]
  33. C. Cheng and H. Zhang, “Characteristics of bandwidth, gain and noise of a PbSe quantum dot-doped fiber amplifier,” Opt. Commun. 277, 372–378 (2007). [CrossRef]
  34. C. Jiang, “Ultrabroadband gain characteristics of a quantum-dot-doped fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 15, 140–144 (2009). [CrossRef]
  35. K. Kang, K. Daneshvar, and R. Tsu, “Size dependence saturation and absorption of PbS quantum dots,” Microelectron. J. 35, 629–633 (2004). [CrossRef]
  36. J. F. Philipps, T. Topfer, H. Ebendorff-Heidepriem, D. Ehrt, R. Sauerbrey, and N. F. Borrelli, “Diode-pumped erbium-ytterbium-glass laser passively Q-switched with a PbS semiconductor quantum-dot doped glass,” Appl. Phys. B 72, 175–178 (2001). [CrossRef]
  37. J. E. Raynolds and M. LoCascio, “Semiconductor nanocrystal based saturable absorbers for optical switching applications,” MRS Proc. 737, E4.5 (2002).
  38. A. W. Naji, B. A. Hamida, X. S. Cheng, M. A. Mahdi, S. Harun, S. Khan, W. F. Al-Khateeb, A. A. Zaidan, B. B. Zaidan, and H. Ahmad, “Review of erbium-doped fiber amplifier,” Int. J. Phys. Distrib. Logist. Manag. 6, 4674–4689 (2011).
  39. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  40. P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology (Academic, 1999).
  41. K. Y. Ko, M. S. Demokan, and H. Y. Tam, “Transient analysis of erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 6, 1436–1438 (1994). [CrossRef]
  42. C. Cheng, “A multiquantum-dot-doped fiber amplifier with characteristics of broadband, flat gain, and low noise,” J. Lightwave Technol. 26, 1404–1410 (2008). [CrossRef]
  43. B. Pedersen, A. Bjarklev, O. Lumholt, and J. H. Povlsen, “Detailed design analysis of erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 3, 548–550 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited