OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 29 — Oct. 10, 2012
  • pp: 7025–7038

Principles and performance of tapered fiber lasers: from uniform to flared geometry

Juho Kerttula, Valery Filippov, Yuri Chamorovskii, Vasily Ustimchik, Konstantin Golant, and Oleg G. Okhotnikov  »View Author Affiliations


Applied Optics, Vol. 51, Issue 29, pp. 7025-7038 (2012)
http://dx.doi.org/10.1364/AO.51.007025


View Full Text Article

Enhanced HTML    Acrobat PDF (812 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have studied the recently demonstrated concept of fiber lasers based on active tapered double-clad fiber (T-DCF) in copropagating and counterpropagating configurations, both theoretically and experimentally, and compared the performance to fiber lasers based on conventional cylindrical fibers in end-pumped configurations. Specific properties of T-DCFs were considered theoretically using a rate-equation model developed for tapered fibers, and a detailed comparative study was carried out experimentally. Furthermore, we have studied mode coupling effects in long adiabatic tapers due to coiling and local bending. The results allow us to conclude that, with proper fiber design, the T-DCF technology offers a high-potential alternative for bright, cost-effective fiber devices.

© 2012 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: July 5, 2012
Manuscript Accepted: August 21, 2012
Published: October 8, 2012

Citation
Juho Kerttula, Valery Filippov, Yuri Chamorovskii, Vasily Ustimchik, Konstantin Golant, and Oleg G. Okhotnikov, "Principles and performance of tapered fiber lasers: from uniform to flared geometry," Appl. Opt. 51, 7025-7038 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-29-7025


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. Filippov, Y. Chamorovskii, J. Kerttula, K. Golant, M. Pessa, and O. G. Okhotnikov, “Double clad tapered fiber for high power applications,” Opt. Express 16, 1929–1944 (2008). [CrossRef]
  2. V. Filippov, Y. Chamorovskii, J. Kerttula, A. Kholodkov, and O. G. Okhotnikov, “600 W power scalable single transverse mode tapered double-clad fiber laser,” Opt. Express 17, 1203–1214 (2009). [CrossRef]
  3. V. Filippov, J. Kerttula, Y. Chamorovskii, K. Golant, and O. G. Okhotnikov, “Highly efficient 750 W tapered double-clad ytterbium fiber laser,” Opt. Express 18, 12499–12512(2010). [CrossRef]
  4. S. V. Chernikov, Y. Zhu, J. R. Taylor, and V. P. Gapontsev, “Supercontinuum self-Q-switched ytterbium fiber laser,” Opt. Lett. 22, 298–300 (1997). [CrossRef]
  5. I. Kelson and A. Hardy, “Strongly pumped fiber lasers,” IEEE J. Quantum Electron. 34, 1570–1577 (1998). [CrossRef]
  6. V. A. Bagan, S. A. Nikitov, Yu. K. Chamorovskii, and A. D. Shatrov, “Studying the properties of double-clad active cone optic fibers,” J. Commun. Technol. Electron. 55, 1154–1160 (2010). [CrossRef]
  7. A. W. Snyder, “Coupling of modes on a tapered dielectric cylinder,” IEEE Trans. Microwave Theory Tech. 18, 383–392 (1970). [CrossRef]
  8. D. Marcuse, “Mode conversion in optical fibers with monotonically increasing core radius,” J. Lightwave Technol. 5, 125–133 (1987). [CrossRef]
  9. H. Yoda, O. Polynkin, and M. Mansuripur, “Beam quality factor of higher order modes in a step-index fiber,” J. Lightwave Technol. 24, 1350–1355 (2006). [CrossRef]
  10. T. Ozeki and B. S. Kawasaki, “Mode behaviour in a tapered multimode fibre,” Electron. Lett. 12, 407–408 (1976). [CrossRef]
  11. Y.-F. Li and J. W. Y. Lit, “Mode changes in step-index multimode fiber tapers,” J. Opt. Soc. Am. A 3, 161–164 (1986). [CrossRef]
  12. A. Fielding, K. Edinger, and C. Davis, “Experimental observation of modal evolution in single-mode tapered optical fibers,” J. Lightwave Technol. 17, 1649–1656 (1999). [CrossRef]
  13. P. M. Shankar, L. C. Bobb, and H. D. Krumboltz, “Coupling of modes in bent biconically tapered single-mode fibers,” J. Lightwave Technol. 9, 832–837 (1991). [CrossRef]
  14. L. C. Bobb, P. M. Shankar, and H. D. Krumboltz, “Bending effects in biconically tapered single-mode fibers,” J. Lightwave Technol. 8, 1084–1090 (1990). [CrossRef]
  15. L. C. Bobb, H. D. Krumboltz, and P. M. Shankar, “Pressure sensor that uses bent biconically tapered single-mode fibers,” Opt. Lett. 16, 112–114 (1991). [CrossRef]
  16. S. E. Golowich, W. A. Reed, and A. J. Ritger, “A new modal power distribution measurement for high-speed short-reach optical systems,” J. Lightwave Technol. 22, 457–468 (2004). [CrossRef]
  17. N. Andermahr, T. Theeg, and C. Fallnich, “Novel approach for polarization-sensitive measurements of transverse modes in few-mode optical fibers,” Appl. Phys. B 91, 353–357(2008). [CrossRef]
  18. C. Schulze, O. Schmidt, D. Flamm, M. Duparre, and S. Schroter, “Modal analysis of beams emerging from a multi-core fiber using computer-generated holograms,” Proc. SPIE 7914, 79142H1 (2011). [CrossRef]
  19. D. B. S. Soh, J. Nilsson, S. Baek, C. Codemard, Y. Jeong, and V. Philippov, “Modal power decomposition of beam intensity profiles into linearly polarized modes of multimode optical fibers,” J. Opt. Soc. Am. A 21, 1241–1250 (2004). [CrossRef]
  20. J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express 16, 7233–7243 (2008). [CrossRef]
  21. J. W. Nicholson, A. D. Yablon, J. M Fini, and M. D. Mermelstein, “Measuring the modal content of large-mode-area fibers,” IEEE J. Sel. Top. Quantum Electron. 15, 61–70(2009). [CrossRef]
  22. A. Iho, A. Tervonen, K. Ylä-Jarkko, S. Tammela, and S. Honkanen, “Characterization of modal coupling of Bragg gratings in large-mode-area fibers,” J. Lightwave Technol. 29, 2031–2038 (2011). [CrossRef]
  23. R. Olshansky, “Mode coupling effects in graded-index optical fibers” Appl. Opt. 14, 935–945 (1975). [CrossRef]
  24. S. Wielandy, “Implications of higher-order mode content in large mode area fibers with good beam quality,” Opt. Express 15, 15402–15409 (2007). [CrossRef]
  25. M. C. Hudson, “Calculation of the maximum optical coupling efficiency into multimode optical waveguides,” Appl. Opt. 13, 1029–1033 (1974). [CrossRef]
  26. A. Kosterin, V. Temyanko, M. Fallahi, and M. Mansuripur, “Tapered fiber bundles for combining high-power diode lasers,” Appl. Optics 43, 3893–3900 (2004). [CrossRef]
  27. K. M. Golant, “Surface plasma chemical vapor deposition: 20 years of application in glass synthesis for lightguides (a review),” in Proceedings of XXI International Congress on Glass (CD) (2007), paper L13.
  28. J. J. Koponen, M. J. Söderlund, H. J. Hoffman, and S. K. T. Tammela, “Measuring photodarkening from single-mode ytterbium doped silica fibers,” Opt. Express 14, 11539–11544 (2006). [CrossRef]
  29. M. E. Fermann, “Single-mode excitation of multimode fibers with ultrashort pulses,” Opt. Lett. 23, 52–54 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited