OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 29 — Oct. 10, 2012
  • pp: 7046–7051

Characteristics of a Brillouin-erbium fiber laser based on Brillouin pump preamplification

Huijuan Zhou, Chongfeng Sun, Mo Chen, Wei Chen, and Zhou Meng  »View Author Affiliations

Applied Optics, Vol. 51, Issue 29, pp. 7046-7051 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (553 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A single-mode Brillouin-erbium fiber laser (BEFL) is realized using only a 5 m single-mode fiber (SMF) as Brillouin gain medium, which to our best knowledge is the shortest SMF ever used to construct a BEFL. The Brillouin pump (BP) preamplification technique is adopted using a bidirectionally amplified erbium-doped fiber amplifier inside the BEFL cavity. This BEFL presents a high optical signal-to-noise ratio (40dB), a large output power (10mW), and a low 980 nm pump threshold (15mW). Experimental results indicate that this threshold increases with the BP power. Two lower and upper BP thresholds exist for the BEFL onset and turnoff, respectively, for a fixed 980 nm pump power. Moreover, the output power of this BEFL increases linearly with the 980 nm pump power at the same slope efficiency of 10% for various BP powers, but decreases linearly with the BP power at the same slope efficiency of 26% for various 980 nm pump powers.

© 2012 Optical Society of America

OCIS Codes
(140.3500) Lasers and laser optics : Lasers, erbium
(140.3570) Lasers and laser optics : Lasers, single-mode
(290.5900) Scattering : Scattering, stimulated Brillouin

ToC Category:
Lasers and Laser Optics

Original Manuscript: June 28, 2012
Revised Manuscript: September 12, 2012
Manuscript Accepted: September 13, 2012
Published: October 8, 2012

Huijuan Zhou, Chongfeng Sun, Mo Chen, Wei Chen, and Zhou Meng, "Characteristics of a Brillouin-erbium fiber laser based on Brillouin pump preamplification," Appl. Opt. 51, 7046-7051 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, “Performance of a WDM network based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 1, 111–113(1989). [CrossRef]
  2. S. P. Smith, F. Zarinetchi, and S. Ezekiel, “Narrow-linewidth stimulated Brillouin fiber laser and applications,” Opt. Lett. 16, 393–395 (1991). [CrossRef]
  3. X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors 11, 4152–4187 (2011). [CrossRef]
  4. K. O. Hill, B. S. Kawasaki, and D. C. Johnson, “CW generation of multiple Stokes and anti-Stokes Brillouin-shifted frequencies,” Appl. Phys. Lett. 29, 185–187 (1976). [CrossRef]
  5. G. J. Cowle and D.Yu. Stepanov, “Hybrid Brillouin/erbium fiber laser,” Opt. Lett. 21, 1250–1252 (1996). [CrossRef]
  6. G. J. Cowle, D.Yu. Stepanov, and Y. T. Chieng, “Brillouin/erbium fiber laser,” J. Lightwave Technol. 15, 1198–1204 (1997). [CrossRef]
  7. G. J. Cowle and D.Yu. Stepanov, “Properties of Brillouin/erbium fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 1049–1057 (1997). [CrossRef]
  8. A. Loayssa, D. Benito, and M. J. Garde, “High-resolution measurement of stimulated Brillouin scattering spectra in single-mode fiber,” IEE Proc. Optoelectron. 148, 143–148 (2001). [CrossRef]
  9. L. Liu, Y. Shen, S. Zheng, X. Jin, H. Chi, and X. Zhang, “Optical generation of microwave/millmeter-wave based on Brillouin-erbium fiber laser,” Microw. Opt. Technol. Lett. 53, 1761–1763 (2011). [CrossRef]
  10. Y. J. Song, L. Zhan, J. H. Ji, Y. Su, Q. H. Ye, and Y. X. Xia, “Self-seeded multiwavelength Brillouin-erbium fiber laser,” Opt. Lett. 30, 486–488 (2005). [CrossRef]
  11. L. Zhan, J. H. Ji, J. Xia, S. Y. Luo, and Y. X. Xia, “160-line multiwavelength generation of linear-cavity self-seeded Brillouin-ebium fiber laser,” Opt. Express 14, 10233–10238 (2006). [CrossRef]
  12. J. Tang, J. Sun, L. Zhao, T. Chen, T. Huang, and Y. Zhou, “Tunable multiwavelength generation based on Brillouin-erbium comb fiber laser assisted by multiple four-wave mixing processes,” Opt. Express 19, 14682–14689 (2011). [CrossRef]
  13. M. H. Al-Mansoori and M. A. Mahdi, “Tunable range enhancement of Brillouin-erbium fiber laser utilizing Brillouin pump pre-amplification technique,” Opt. Express 16, 7649–7654 (2008). [CrossRef]
  14. N. Md. Samsuri, A. K. Zamzuri, M. H. Al-Mansoori, A. Ahmad, and M. A. Mahdi, “Brillouin-erbium fiber laser with enhanced feedback couping using common Erbium gain section,” Opt. Express 16, 16475–16480 (2008). [CrossRef]
  15. M. H. Al-Mansoori and M. A. Mahdi, “Reduction of gain depletion and saturation on a Brillouin-erbium fiber laser utilizing a Brillouin pump preamplification technique,” Appl. Opt. 48, 3424–3428 (2009). [CrossRef]
  16. N. A. Hambali, M. A. Mahdi, M. H. Al-Mansoori, A. F. Abas, and M. I. Saripan, “Investigation on the effect of EDFA location in ring cavity Brillouin-erbium fiber laser,” Opt. Express 17, 11768–11775 (2009). [CrossRef]
  17. S. W. Harun, S. Shahi, and H. Ahmad, “Compact Brillouin-erbium fiber laser,” Opt. Lett. 34, 46–48 (2009). [CrossRef]
  18. S. Shahi and S. W. Harun, “Brillouin fiber laser with significantly reduced gain medium length operating in L-band region,” Prog. Electromagn. Res. Lett. 8, 143–149 (2009). [CrossRef]
  19. A. Loayssa, D. Benito, and M. J. Garde, “Applications of optical carrier Brillouin processing to microwave photonics,” Opt. Fiber Technol. 8, 24–42 (2002). [CrossRef]
  20. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited