OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 29 — Oct. 10, 2012
  • pp: 7052–7058

Experimental research on terahertz Gabor inline digital holography of concealed objects

Qi Li, Kai Xue, Yun-Da Li, and Qi Wang  »View Author Affiliations

Applied Optics, Vol. 51, Issue 29, pp. 7052-7058 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1298 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Terahertz (THz) radiation has the characteristics of penetrating nonmetallic and nonpolar materials that are opaque to visible light, which makes THz digital holography have an application potential of imaging concealed objects with certain barriers. A CO 2 pumped continuous THz Gabor inline digital holographic imaging system was utilized to conduct experimental researches on imaging concealed objects. Paper, Teflon, a plastic express envelope, and silicon wafers were used as barriers. High-quality reconstructed images were obtained. Compared with the reconstruction results without any barriers, the results verify the feasibility of THz Gabor inline digital holography in imaging concealed objects.

© 2012 Optical Society of America

OCIS Codes
(090.1995) Holography : Digital holography
(110.6795) Imaging systems : Terahertz imaging

ToC Category:

Original Manuscript: July 5, 2012
Revised Manuscript: August 30, 2012
Manuscript Accepted: September 7, 2012
Published: October 9, 2012

Qi Li, Kai Xue, Yun-Da Li, and Qi Wang, "Experimental research on terahertz Gabor inline digital holography of concealed objects," Appl. Opt. 51, 7052-7058 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. J. Mahon, J. A. Murphy, and W. Lanigan, “Digital holography at millimetre wavelengths,” Opt. Commun. 260, 469–473 (2006). [CrossRef]
  2. R. J. Mahon, J. A. Murphy, and W. Lanigan, “Terahertz holographic image reconstruction and analysis,” in 2004 Joint 29th International Conference on Infrared and Millimeter Waves (IEEE, 2004), pp. 749–750. [CrossRef]
  3. I. McAuley, J. A. Murphy, N. Trappe, R. Mahon, D. McCarthy, and P. McLaughlin, “Applications of holography in the millimeter-wave and terahertz region,” Proc. SPIE 7939, 79380H (2011). [CrossRef]
  4. M. S. Heimbeck, M. K. Kim, D. A. Gregory, and H. O. Everitt, “Terahertz digital holography using angular spectrum and dual wavelength reconstruction methods,” Opt. Express 19, 9192–9200 (2011). [CrossRef]
  5. V. S. Cherkassky, B. A. Knyazev, S. V. Kozlov, V. V. Kubarev, G. N. Kulipanov, A. N. Matveenko, V. M. Popik, D. N. Root, P. D. Rudych, O. A. Shevchenko, A. V. Trifutina, and N. A. Vinokurov, “Terahertz imaging and holography with a high-power free electron laser,” in 2005 Joint 30th International Conference on Infrared and Millimeter Waves & 13th International Conference on Terahertz Electronics, Vol. 2 (IEEE, 2005), pp. 337–338. [CrossRef]
  6. B. A. Knyazev, A. L. Balandin, V. S. Cherkassky, Y. Y. Choporova, V. V. Gerasimov, M. A. Demyanenko, D. G. Esaev, A. A. Nikitin, V. V. Pickalov, M. G. Vlasenko, D. G. Rodionov, and O. A. Shevchenko, “Classic holography, tomography and speckle metrology using a high-power terahertz free electron laser and real-time image detectors,” in 2010 International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2010), pp. 1–3. [CrossRef]
  7. Y. Zhang, W. Zhou, X. Wang, Y. Cui, and W. Sun, “Terahertz digital holography,” Strain 44, 380–385 (2008). [CrossRef]
  8. S.-H. Ding, Q. Li, Y.-D. Li, and Q. Wang, “Continuous-wave terahertz digital holography by use of a pyroelectric array camera,” Opt. Lett. 36, 1993–1995 (2011). [CrossRef]
  9. Q. Li, S. H. Ding, Y. D. Li, and Q. Wang, “Experimental research on resolution improvement in cw THz digital holography,” Appl. Phys. B 107, 103–110 (2012). [CrossRef]
  10. K. Xue, Q. Li, Y.-D. Li, and Q. Wang, “Continuous-wave terahertz inline digital holography,” Opt. Lett. 37, 3228–3230 (2012). [CrossRef]
  11. A. R. Sanchez and X.-C. Zhang, “Terahertz science and technology trends,” IEEE J. Sel. Top. Quantum Electron. 14, 260–269 (2008). [CrossRef]
  12. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11, 2549–2554(2003). [CrossRef]
  13. A. W. M. Lee and Q. Hu, “Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array,” Opt. Lett. 30, 2563–2565 (2005). [CrossRef]
  14. A. W. M. Lee, B. S. Williams, and S. Kumar, “Real-time imaging using a 4.3 THz quantum cascade laser and a 320 × 240 microbolometer focal-plane array,” IEEE Photon. Technol. Lett. 18, 1415–1417 (2006). [CrossRef]
  15. B. N. Behnken and G. Karunasiri, “Real-time terahertz imaging of nonmetallic objects for security screening and anti-counterfeiting applications,” Proc. SPIE 7117, 711705 (2008). [CrossRef]
  16. N. Karpowicz, H. Zhong, C. Zhang, K.-I. Lin, J.-S. Hwang, J. Xu, and X.-C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86, 054105 (2005). [CrossRef]
  17. L. Denis, C. Fournier, T. Fournel, and C. Ducottet, “Twin-image noise reduction by phase retrieval in inline digital holography,” Proc. SPIE 5914, 59140J(2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited