OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 29 — Oct. 10, 2012
  • pp: 7069–7079

Flight demonstration of a milliarcsecond pointing system for direct exoplanet imaging

Christopher B. Mendillo, Supriya Chakrabarti, Timothy A. Cook, Brian A. Hicks, and Benjamin F. Lane  »View Author Affiliations

Applied Optics, Vol. 51, Issue 29, pp. 7069-7079 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2809 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present flight results from the optical pointing control system onboard the Planetary Imaging Concept Testbed Using a Rocket Experiment (PICTURE) sounding rocket. PICTURE (NASA mission number: 36.225 UG) was launched on 8 October 2011, from White Sands Missile Range. It attempted to directly image the exozodiacal dust disk of ϵ Eridani (K2V, 3.22 pc) down to an inner radius of 1.5 AU using a visible nulling coronagraph. The rocket attitude control system (ACS) provided 627 milliarcsecond (mas) RMS body pointing ( 2 peak-to-valley). The PICTURE fine pointing system (FPS) successfully stabilized the telescope beam to 5.1 mas ( 0.02 λ / D ) RMS using an angle tracker camera and fast steering mirror. This level of pointing stability is comparable to that of the Hubble Space Telescope. We present the hardware design of the FPS, a description of the limiting noise sources and a power spectral density analysis of the FPS and rocket ACS in-flight performance.

© 2012 Optical Society of America

OCIS Codes
(350.1260) Other areas of optics : Astronomical optics
(220.1080) Optical design and fabrication : Active or adaptive optics

ToC Category:
Astronomical Optics

Original Manuscript: June 19, 2012
Revised Manuscript: August 15, 2012
Manuscript Accepted: September 4, 2012
Published: October 9, 2012

Christopher B. Mendillo, Supriya Chakrabarti, Timothy A. Cook, Brian A. Hicks, and Benjamin F. Lane, "Flight demonstration of a milliarcsecond pointing system for direct exoplanet imaging," Appl. Opt. 51, 7069-7079 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Trauger, D. Moody, B. Gordon, J. Krist, and D. Mawet, “A hybrid lyot coronagraph for the direct imaging and spectroscopy of exoplanet systems: recent results and prospects,” Proc. SPIE 8151, 81510G (2011). [CrossRef]
  2. O. Guyon, B. Kern, R. Belikov, S. Shaklan, A. Kuhnert, and A. Give’On, “Phase-induced amplitude apodization (PIAA) coronagraphy: recent results and future prospects,” Proc. SPIE 8151, 81510H (2011). [CrossRef]
  3. S. R. Rao, J. K. Wallace, R. Samuele, S. Chakrabarti, T. Cook, B. Hicks, P. Jung, B. Lane, B. M. Levine, C. Mendillo, E. Schmidtlin, M. Shao, and J. B. Stewart, “Path length control in a nulling coronagraph with a MEMS deformable mirror and a calibration interferometer,” Proc. SPIE 6888, 68880B (2008). [CrossRef]
  4. R. Samuele, J. Wallace, E. Schmidtlin, M. Shao, B. Levine, and S. Fregoso, “Experimental progress and results of a visible nulling coronagraph,” in Proceedings of IEEE Aerospace Conference (IEEE, 2007), p. 1–7.
  5. M. Shao, B. M. Levine, J. K. Wallace, G. S. Orton, E. Schmidtlin, B. F. Lane, S. Seager, V. Tolls, R. G. Lyon, R. Samuele, D. J. Tenerelli, R. Woodruff, and J. Ge, “A nulling coronagraph for TPF-C,” Proc. SPIE 6265, 626517 (2006). [CrossRef]
  6. M. Shao, S. Bairstow, B. Martin Levine, G. Vasisht, B. F. Lane, G. Vasudevan, R. Woodruff, R. Samuele, J. Wynn, M. Clampin, R. Lyon, and O. Guyon, “DaViNCI, a diluter aperture visible nulling coronagraphic instrument,” Proc. SPIE 7013, 70132T (2008). [CrossRef]
  7. R. G. Lyon, W. R. Oegerle, L. D. Feinberg, M. R. Bolcar, B. H. Dean, G. E. Mosier, and M. Postman, “Coronagraphic wavefront control for the ATLAST 9.2 m telescope,” Proc. SPIE 7731, 77312S (2010). [CrossRef]
  8. C. B. Mendillo, B. A. Hicks, T. A. Cook, T. G. Bifano, D. A. Content, B. F. Lane, B. M. Levine, D. Rabin, S. R. Rao, R. Samuele, E. Schmidtlin, M. Shao, J. K. Wallace, and S. Chakrabarti, “PICTURE: a sounding rocket experiment for direct imaging of an extrasolar planetary environment,” Proc. SPIE, paper 844211 (to be published).
  9. P. Brugarolas, J. Alexander, J. Trauger, D. Moody, R. Egerman, P. Vallone, J. Elias, R. Hejal, V. Camelo, A. Bronowicki, D. O’Connor, R. Patrick, P. Orzechowski, C. Spittler, and C. Lillie, “ACCESS pointing control system,” Proc. SPIE 7731, 77314V (2010). [CrossRef]
  10. G. Bryden, W. Traub, L. C. Roberts, R. Bruno, S. Unwin, S. Backovsky, P. Brugarolas, S. Chakrabarti, P. Chen, L. Hillenbrand, J. Krist, C. Lillie, B. Macintosh, D. Mawet, B. Mennesson, D. Moody, Z. Rahman, J. Rey, K. Stapelfeldt, D. Stuchlik, J. Trauger, and G. Vaischt, “Zodiac ii: debris disk science from a balloon,” Proc. SPIE 8151, 81511E (2011). [CrossRef]
  11. G. Schneider and O. Guyon, E. Science, Mission, and Technology Team, “The exoplanetary circumstellar disk environments and disk explorer,” presented at the 219th meeting of the American Astronomical Society, Austin, Texas, 8–12 January 2012.
  12. M. Shao and B. M. Levine, “Dilute aperture visible nulling coronagraphic imager (DaViNCI),” in Vol. 430 of Astronomical Society of the Pacific Conference Series (Astronomical Society of the Pacific, 2010), p. 368.
  13. T. Matsuo, M. Fukagawa, T. Kotani, Y. Itoh, M. Tamura, T. Nakagawa, and K. Enya, SCI team, “Direct detection and spectral characterization of outer exoplanets with the SPICA Coronagraph Instrument (SCI),” Adv. Space Res. 47, 1455–1462 (2011). [CrossRef]
  14. K.-C. Liu, C. Blaurock, and G. E. Mosier, “Pointing control system design and performance evaluation of TPF coronagraph,” Proc. SPIE 5497, 437–448 (2004). [CrossRef]
  15. R. G. Dekany, J. K. Wallace, G. Brack, B. R. Oppenheimer, and D. Palmer, “Initial test results from the Palomar 200-in. adaptive optics system,” Proc. SPIE 3126, 269–276 (1997). [CrossRef]
  16. P. L. Wizinowich, D. Le Mignant, A. H. Bouchez, R. D. Campbell, J. C. Y. Chin, A. R. Contos, M. A. van Dam, S. K. Hartman, E. M. Johansson, R. E. Lafon, H. Lewis, P. J. Stomski, D. M. Summers, C. G. Brown, P. M. Danforth, C. E. Max, D. M. Pennington, “The W. M. Keck Observatory laser guide star adaptive optics system: Overview,” Publ. Astron. Soc. Pac. 118, 297–309 (2006). [CrossRef]
  17. F. Vogt, F. Martinache, O. Guyon, T. Yoshikawa, K. Yokochi, V. Garrel, and T. Matsuo, “The Subaru Coronographic Extreme AO (SCExAO) system: implementation and performances of the coronographic low order wavefront sensor,” Proc. SPIE 7736, 773612 (2010). [CrossRef]
  18. L. M. Close and D. W. McCarthy, “High-resolution imaging with a tip-tilt Cassegrain secondary,” Publ. Astron. Soc. Pac. 106, 77–86 (1994). [CrossRef]
  19. S. S. Olivier, C. E. Max, D. T. Gavel, and J. M. Brase, “Tip-tilt compensation—resolution limits for ground-based telescopes using laser guide star adaptive optics,” Astrophys. J. 407, 428–439 (1993). [CrossRef]
  20. J. R. Taylor, M. S. Anderson, and P. H. Bunton, “High-speed tilt mirror for image stabilization,” Appl. Opt. 38, 219–223 (1999). [CrossRef]
  21. M. Warner, S. Heathcote, G. Schumacher, R. Cantarutti, and E. Parkes, “Upgrading the controller of the fast tip-tilt tertiary mirror for the SOAR telescope,” Proc. SPIE 7739, 77393D (2010). [CrossRef]
  22. J. T. Stein and C. Neufeld, “A fast steering tertiary mirror for the SOAR telescope,” Proc. SPIE 5495, 340–347 (2004). [CrossRef]
  23. A. Glindemann, M. J. McCaughrean, S. Hippler, C. Birk, K. Wagner, and R.-R. Rohloff, “CHARM—a tip-tilt tertiary system for the Calar Alto 3.5 m telescope,” Publ. Astron. Soc. Pac. 109, 688–696 (1997). [CrossRef]
  24. M. Bottema, W. G. Fastie, and H. W. Moos, “A rocket telescope spectrometer with high precision pointing control,” Appl. Opt. 8, 1821–1826 (1969). [CrossRef]
  25. T. Shimizu, S. Nagata, S. Tsuneta, T. Tarbell, C. Edwards, R. Shine, C. Hoffmann, E. Thomas, S. Sour, R. Rehse, O. Ito, Y. Kashiwagi, M. Tabata, K. Kodeki, M. Nagase, K. Matsuzaki, K. Kobayashi, K. Ichimoto, and Y. Suematsu, “Image stabilization system for Hinode (Solar-B) solar optical telescope,” Solar Phys. 249, 221–232 (2008). [CrossRef]
  26. e2v, www.e2v.com .
  27. R. C. DuVarney, C. A. Bleau, G. T. Motter, S. B. Shaklan, A. C. Kuhnert, G. Brack, D. Palmer, M. Troy, T. Kieu, and R. G. Dekany, “EEV CCD39 wavefront sensor cameras for AO and interferometry,” Proc. SPIE 4007, 481–492 (2000). [CrossRef]
  28. L. A. Thompson, S. W. Teare, S. L. Crawford, and R. W. Leach, “Rayleigh laser guide star systems: UnISIS bowtie shutter and CCD39 wavefront camera,” Publ. Astron. Soc. Pac. 114, 1143–1149 (2002). [CrossRef]
  29. Astronomical Research Cameras (ARC), www.astro-cam.com .
  30. T. A. Brummelaar, H. A. McAlister, S. T. Ridgway, W. G. Bagnuolo, N. H. Turner, L. Sturmann, J. Sturmann, D. H. Berger, C. E. Ogden, R. Cadman, W. I. Hartkopf, C. H. Hopper, and M. A. Shure, “First results from the CHARA array. II. A description of the instrument,” Astrophys. J. 628, 453–465 (2005). [CrossRef]
  31. Physik Instrumente (PI), www.physikinstrumente.com .
  32. C. Helstrom, “The detection and resolution of optical signals,” IEEE Trans. Inf. Theory 10, 275–287 (1964). [CrossRef]
  33. D. Down, “Image-position error associated with a focal plane array,” J. Opt. Soc. Am. A. 9, 700–707 (1992). [CrossRef]
  34. X. Ma, C. Rao, and H. Zheng, “Error analysis of CCD-based point source centroid computation under the background light,” Opt. Express 17, 8525–8541 (2009). [CrossRef]
  35. C. Buil, CCD Astronomy: Construction and Use of an Astronomical CCD Camera (Willmann-Bell, 1991).
  36. J. W. Percival, K. P. Jaehnig, and K. H. Nordsieck, “A low-cost star tracker for sounding rockets and class D satellites,” in Vol. 39 of Bulletin of the American Astronomical Society (American Astronomical Society, 2007), p. 976.
  37. The HST MultiDrizzle Handbook, http://www.stsci.edu/hst/HST_overview/documents/multidrizzle/ch42.html .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited