OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 29 — Oct. 10, 2012
  • pp: 7089–7093

Impact of LOCOS techniques on photonic wire waveguides

Yule Xiong, Marc Ibrahim, and Winnie N. Ye  »View Author Affiliations

Applied Optics, Vol. 51, Issue 29, pp. 7089-7093 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (664 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We use the LOCal oxidation of silicon (LOCOS) method as a fabrication technique to define submicrometer photonic waveguides. We attempted fabricating the wire waveguides with two different masking processes, one with a stack of pad oxide and silicon nitride layers, and the other with a single silicon nitride layer. The smallest waveguide we achieved had a cross-section profile of 280nm×650nm. The propagation loss of the waveguides was measured by the cut-back method, and the bending loss was measured by employing the serpentine pattern. The minimum propagation loss achieved was 8.78dB/cm and the bending loss was 0.0089dB/90° bend for a 5 μm bending radius.

© 2012 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.7370) Optical devices : Waveguides
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Optical Devices

Original Manuscript: July 12, 2012
Revised Manuscript: September 5, 2012
Manuscript Accepted: September 7, 2012
Published: October 9, 2012

Yule Xiong, Marc Ibrahim, and Winnie N. Ye, "Impact of LOCOS techniques on photonic wire waveguides," Appl. Opt. 51, 7089-7093 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006). [CrossRef]
  2. Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12, 1622–1631 (2004). [CrossRef]
  3. G. T. Reed, W. R. Headley, G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, and M. M. Milosevic, “Silicon photonics-the evolution of integration,” in Silicon Photonics for Telecommunication and Biomedicine, S. Fathpour and B. Jalali, eds. (CRC Press, 2011), pp. 7–8.
  4. L. K. Rowe, M. Elsey, N. G. Tarr, A. P. Knights, and E. Post, “CMOS-compatible optical rib waveguides defined by local oxidation of silicon,” IEEE Electron. Lett. 43, 392–393 (2007). [CrossRef]
  5. F. Y. Gardes, G. T. Reed, A. P. Knight, G. Mashanovich, P. E. Jessop, L. Rowe, S. McFaul, D. Bruce, and N. G. Tarr, “Sub-micron optical waveguides for silicon photonic formed via the local oxidation of silicon (LOCOS),” Proc. SPIE 6898, 68980R (2008). [CrossRef]
  6. M. P. Nezhad, O. Bondarenko, M. Khajavikhan, A. Simic, and Y. Fainman, “Etch-free low loss silicon waveguides using hydrogen silsesquioxane oxidation masks,” Opt. Express 19, 18827–18832 (2011). [CrossRef]
  7. J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Express 17, 4752–4757 (2009). [CrossRef]
  8. B. Desiatov, I. Goykhman, and U. Levy, “Demonstration of submicron square-like silicon waveguide using optimized LOCOS process,” Opt. Express 18, 18592–18597 (2010). [CrossRef]
  9. A. W. Tam, M. Ibrahin, B. Lamontagne, N. G. Tarr, W. N. Ye, S. Janz, and D.-X. Xu, “Deep submicron LOCOS-defined SOI photonic wire waveguides,” in 8th IEEE International Conference on Group IV Photonics (IEEE, 2011), pp. 249–251.
  10. Y. Xiong, M. Ibrahim, and W. N. Ye, “Low-loss photonic wires defined by local oxidation of silicon (LOCOS),” Proc. SPIE 8265, 82650D (2012). [CrossRef]
  11. http://www.synopsys.com/TOOLS/TCAD/PROCESSSIMULATION/Pages/TaurusTSupreme4.aspx .
  12. http://www.rsoftdesign.com/ .
  13. K. Yamada, “Silicon photonics wire waveguides: fundamentals and applications,” in Silicon Photonics II Components and Integration, D. J. Lockwood and L. Passesi, eds. (Springer, 2011), pp. 7–13.
  14. F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguide,” Opt. Quantum. Electron. 26, 977–986 (1994). [CrossRef]
  15. D. Dai, Y. Shi, and S. He, “Characteristics analysis of nanosilicon rectangular waveguides for planar light-wave circuits of high integration,” Appl. Opt. 45, 4941–4946 (2006). [CrossRef]
  16. K. Kakihara, N. Kono, K. Saitoh, T. Fujisawa, and M. Koshiba, “Impact of structural deformations on polarization conversion in high index contrast waveguides,” Opt. Express 14, 7046–7056 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited