OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 29 — Oct. 10, 2012
  • pp: 7094–7097

Generation of polarization vortices with a Wollaston prism and an interferometric arrangement

Jingtao Xin, Chunqing Gao, Chen Li, and Zheng Wang  »View Author Affiliations

Applied Optics, Vol. 51, Issue 29, pp. 7094-7097 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (447 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A stable and simple interferometric arrangement based on a Wollaston prism is designed to combine two helical beams into a polarization vortex (PV). Different modes of helical beams are generated by a spatial light modulator (SLM). Due to the flexibility of the SLM, PVs with different kinds of intensity distribution, such as Laguerre–Gaussian modes and Bessel modes, are generated.

© 2012 Optical Society of America

OCIS Codes
(090.2890) Holography : Holographic optical elements
(050.4865) Diffraction and gratings : Optical vortices

ToC Category:

Original Manuscript: July 27, 2012
Revised Manuscript: September 5, 2012
Manuscript Accepted: September 5, 2012
Published: October 9, 2012

Jingtao Xin, Chunqing Gao, Chen Li, and Zheng Wang, "Generation of polarization vortices with a Wollaston prism and an interferometric arrangement," Appl. Opt. 51, 7094-7097 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000). [CrossRef]
  2. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003). [CrossRef]
  3. H. Kawauchi, K. Yonezawa, Y. Kozawa, and S. Sato, “Calculation of optical trapping forces on a dielectric sphere in the ray optics regime produced by a radially polarized laser beam,” Opt. Lett. 32, 1839–1841 (2007). [CrossRef]
  4. V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32, 1455–1461 (1999). [CrossRef]
  5. W. Chen and Q. Zhan, “Numerical study of an aperture less near field scanning optical microscope probe under radial polarization illumination,” Opt Express 15, 4106–4111(2007). [CrossRef]
  6. Y. Liu, D. Cline, and P. He, “Vacuum laser acceleration using a radially polarized CO2 laser beam,” Nucl. Instrum. Methods Phys. Res. A 424, 296–303 (1999). [CrossRef]
  7. G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Spatially-variable retardation plate for efficient generation of radially and azimuthally-polarized beams,” Opt. Commun. 281, 732–738 (2008). [CrossRef]
  8. M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett. 21, 1948–1950 (1996). [CrossRef]
  9. S. C. Tidwell, D. H. Ford, and W. D. Kimura, “Generating radially polarized beams interferometrically,” Appl. Opt. 29, 2234–2239 (1990). [CrossRef]
  10. N. Passilly, R. de Saint Denis, K. Aït-Ameur, F. Treussart, R. Hierle, and J.-F. Roch, “Simple interferometric technique for generation of a radially polarized light beam,” J. Opt. Soc. Am. A 22, 984–991 (2005). [CrossRef]
  11. Z. Zhou, Q. Tan, and G. Jin, “Surface plasmon interference formed by tightly focused higher polarization order axially symmetric polarized beams,” Chin. Opt. Lett. 8, 1178–1181 (2010). [CrossRef]
  12. W. Cheng, J. W. Haus, and Q. Zhan, “Propagation of vector vortex beams through a turbulent atmosphere,” Opt. Express 17, 17829–17836 (2009). [CrossRef]
  13. X. L. Wang, J. Ding, W. J. Ni, C. S. Guo, and H. T. Wang, “Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement,” Opt. Lett. 32, 3549–3551 (2007). [CrossRef]
  14. P. H. Jones, M. Rashid, M. Makita, and O. M. Maragò, “Sagnac interferometer method for synthesis of fractional polarization vortices,” Opt. Lett. 34, 2560–2562 (2009). [CrossRef]
  15. C. Maurer, A. Jesacher, and S. Fürhapter, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9, 78 (2007). [CrossRef]
  16. S. Iwahashi, Y. Kurosaka, K. Sakai, K. Kitamura, N. Takayama, and S. Noda, “Higher-order vector beams produced by photonic-crystal lasers,” Opt. Express 19, 11963–11968 (2011). [CrossRef]
  17. M. W. Beijersbergen and L. Allen, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993). [CrossRef]
  18. C. Q. Gao, G. H. Wei, and H. Weber, “Generation of the stigmatic beam with orbital angular momentum,” Chin. Phys. Lett. 18, 771–773 (2001). [CrossRef]
  19. M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wave front laser beams produced with a spiral phase plate,” Opt. Commun. 112, 321–327 (1994). [CrossRef]
  20. K. Sueda, G. Miyaji, N. Miyanaga, and M. Nakatsuka, “Laguerre-Gaussian beam generated with a multilevel spiral phase plate for high intensity laser pulses,” Opt. Express 12, 3548–3553 (2004). [CrossRef]
  21. N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17, 221–223 (1992). [CrossRef]
  22. R. W. Gerchberg and W. O. Saxton, ‘‘A practical algorithm for the determination of phase from image and diffraction plane pictures,’’ Optik 35, 237–246 (1972).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited