OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 29 — Oct. 10, 2012
  • pp: 7124–7129

Compact wavelength splitter based on self-imaging principles in Bragg reflection waveguides

Bing Chen, Lin Huang, Yongdong Li, Chunliang Liu, and Guizhong Liu  »View Author Affiliations

Applied Optics, Vol. 51, Issue 29, pp. 7124-7129 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (885 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The self-imaging phenomena in multimode Bragg reflection waveguides (BRWs) have been predicted and investigated by using the plane-wave expansion method and the finite-difference time-domain method. A compact wavelength splitter based on self-imaging principles in BRWs is presented, and its transmission characteristics are investigated by using the finite-difference time-domain method. Calculated results indicate that, for the wavelength splitter without any waveguide bend optimizations, two optical waves with different wavelengths can be spatially separated, and corresponding transmittances are 95.6% and 90.1%, respectively. The simple and compact wavelength splitter is expected to be applied to highly dense photonic integrated circuits.

© 2012 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.7390) Optical devices : Waveguides, planar
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Optical Devices

Original Manuscript: June 12, 2012
Revised Manuscript: August 29, 2012
Manuscript Accepted: September 9, 2012
Published: October 10, 2012

Bing Chen, Lin Huang, Yongdong Li, Chunliang Liu, and Guizhong Liu, "Compact wavelength splitter based on self-imaging principles in Bragg reflection waveguides," Appl. Opt. 51, 7124-7129 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett. 80, 960–963 (1998). [CrossRef]
  2. V. Liu, Y. Jiao, D. A. B. Miller, and S. Fan, “Design methodology for compact photonic-crystal-based wavelength division multiplexers,” Opt. Lett. 36, 591–593 (2011). [CrossRef]
  3. T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpoth, P. I. Borel, and M. Kristensen, “Wavelength-division demultiplexing using photonic crystal waveguide,” IEEE Photon. Technol. Lett. 18, 226–228 (2006). [CrossRef]
  4. M. Koshiba, “Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers.” J. Lightwave Technol. 19, 1970–1975 (2001). [CrossRef]
  5. J. Zimmermann, M. Kamp, A. Forchel, and R. März, “Photonic crystal waveguide directional couplers as wavelength selective optical filters,” Opt. Commun. 230, 387–392 (2004). [CrossRef]
  6. W. Huang, Y. Zhang, and B. Li, “Ultracompact wavelength and polarization splitters in periodic dielectric waveguide,” Opt. Express 16, 1600–1609 (2008). [CrossRef]
  7. H. Kim, I. Park, B. O. S. Park, E. Lee, and S. Lee, “Self-imaging phenomena in multi-mode photonic crystal line-defect waveguides: application to wavelength de-multiplexing,” Opt. Express 12, 5625–5633 (2004). [CrossRef]
  8. S. Zeng, Y. Zhang, and B. Li, “Self-imaging in periodic dielectric waveguides,” Opt. Express 17, 365–378 (2009). [CrossRef]
  9. J. Zarbakhsh, F. Hagmann, S. F. Mingaleev, K. Busch, and K. Hingerl, “Arbitrary angle waveguiding applications of two-dimensional curvilinear-lattice photonic crystals,” Appl. Phys. Lett. 84, 4687–4689 (2004). [CrossRef]
  10. Y. Zhang and B. J. Li, “Photonic crystal-based bending waveguides for optical interconnections,” Opt. Express 14, 5723–5732 (2006). [CrossRef]
  11. P. Yeh and A. Yariv, “Bragg reflection waveguides,” Opt. Commun. 19, 427–430 (1976). [CrossRef]
  12. S. R. A. Dods, “Bragg reflection waveguide,” J. Opt. Soc. Am. A 6, 1465–1476 (1989). [CrossRef]
  13. J. Salzman and G. Lenz, “The Bragg reflection waveguide directional coupler,” IEEE Photon. Technol. Lett. 1, 319–322(1989). [CrossRef]
  14. G. Lenz and J. Salzman, “Bragg reflection waveguide composite structures,” IEEE J. Quantum Electron. 26, 519–531 (1990). [CrossRef]
  15. A. Mizrahi and L. Schächter, “Bragg reflection waveguides with a matching layer,” Opt. Express 12, 3156–3170(2004). [CrossRef]
  16. A. S. Helmy, B. Bijlani, and P. Abolghasem, “Phase matching in monolithic Bragg reflection waveguides,” Opt. Lett. 32, 2399–2401 (2007). [CrossRef]
  17. R. G. DeCorby, N. Ponnampalam, H. T. Nguyen, M. M. Pai, and T. J. Clement, “Guided self-assembly of integrated hollow Bragg waveguides,” Opt. Express 15, 3902–3915 (2007). [CrossRef]
  18. R. G. DeCorby, N. Ponnampalam, E. Epp, T. Allen, and J. N. McMullin, “Chip-scale spectrometry based on tapered hollow Bragg waveguides,” Opt. Express 17, 16632–16645 (2009). [CrossRef]
  19. B. Nistad, M. W. Haakestad, and J. Skaar, “Dispersion properties of planar Bragg waveguides,” Opt. Commun. 265, 153–160 (2006). [CrossRef]
  20. J. Li and K. S. Chiang, “Disappearance of modes in planar Bragg waveguides,” Opt. Lett. 32, 2369–2371 (2007). [CrossRef]
  21. H.-Y. Sang, Z.-Y. Li, and B.-Y. Gu, “Propagation properties of planar Bragg waveguides studied by an analytical Bloch-mode method,” J. Appl. Phys. 98, 043114 (2005). [CrossRef]
  22. J. Li and K. S. Chiang, “Guided modes of one-dimensional photonic bandgap waveguides,” J. Opt. Soc. Am. B 24, 1942–1950 (2007). [CrossRef]
  23. J. Li and K. S. Chiang, “Light guidance in a photonic bandgap slab waveguide consisting of two different Bragg reflectors,” Opt. Commun. 281, 5797–5803 (2008). [CrossRef]
  24. B. Chen, T. Tang, Z. Wang, H. Chen, and Z. Liu, “Flexible optical waveguides based on the omnidirectional reflection of one-dimensional photonic crystals,” Appl. Phys. Lett. 93, 181107 (2008). [CrossRef]
  25. B. Chen, T. Tong, and H. Chen, “Study on a compact flexible photonic crystal waveguide and its bends,” Opt. Express 17, 5033–5038 (2009). [CrossRef]
  26. J. N. Winn, Y. Fink, S. Fan, and J. D. Joannopoulos, “Omnidirectional reflection from a one-dimensional photonic crystal,” Opt. Lett. 23, 1573–1575 (1998). [CrossRef]
  27. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998). [CrossRef]
  28. S. Kim and C. K. Hwangbo, “Design of omnidirectional high reflectors with quarter-wave dielectric stacks for optical telecommunication bands,” Appl. Opt. 41, 3187–3192(2002). [CrossRef]
  29. Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannopoulos, and E. L. Thomas, “Guiding optical light in air using an all-dielectric structure,” J. Lightwave Technol. 17, 2039–2041 (1999). [CrossRef]
  30. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995). [CrossRef]
  31. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001). [CrossRef]
  32. Optiwave, “Optical FDTD,” http://www.optiwave.com/products/fdtd_overview.html .
  33. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time Domain Method, 2nd ed. (Artech House, 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited