OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 3 — Jan. 20, 2012
  • pp: 290–294

Q-switched fiber lasers with carbon nanotubes hosted in ceramics

Yong-Won Song  »View Author Affiliations


Applied Optics, Vol. 51, Issue 3, pp. 290-294 (2012)
http://dx.doi.org/10.1364/AO.51.000290


View Full Text Article

Enhanced HTML    Acrobat PDF (1160 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Q-switched fiber ring lasers operated by single-walled carbon nanotubes (SWNTs) hosted in SiO2 matrix are demonstrated by highlighting their stable operation and dramatically improved thermal damage threshold. Employing aerosol deposition process, SWNTs are incorporated into the ceramic host at room-temperature without solubility limitation. After experiencing the intracavity optical power higher than 15.3 dBm, the hosted SWNTs survive to provide Q-switching operation. The continuous repetition rate tuning is achieved in the range of 11.1–32.2 kHz with the pulse-duration of 7.1–15.8 μs at 1558.5 nm.

© 2012 Optical Society of America

OCIS Codes
(230.4320) Optical devices : Nonlinear optical devices
(160.4236) Materials : Nanomaterials

ToC Category:
Materials

History
Original Manuscript: July 12, 2011
Revised Manuscript: August 29, 2011
Manuscript Accepted: September 3, 2011
Published: January 11, 2012

Citation
Yong-Won Song, "Q-switched fiber lasers with carbon nanotubes hosted in ceramics," Appl. Opt. 51, 290-294 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-3-290


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. T. Verdeyen, “Laser electronics,” Prentice-Hall (1995), 3rd ed.
  2. D. Z. Tsang and J. N. Walpole, “Q-switched semiconductor diode lasers,” J. Quantum Electron. 19, 145–156 (1983). [CrossRef]
  3. X. Zhang, S. Zhao, Q. Wang, B. Ozygus, and H. Weber, “Modeling of passively Q-switched lasers,” J. Opt. Soc. Am. B 17, 1166–1175 (2000). [CrossRef]
  4. J. A. Morris and C. R. Pollock, “Passive Q-switching of a diode-pumped Nd:YAG laser with a saturable absorber,” Opt. Lett. 15, 440–442 (1990). [CrossRef]
  5. R. Paschotta, R. Haring, E. Gini, H. Melchior, U. Keller, H. L. Offerhaus, and D. J. Richardson, “Passively Q-switched 0.1 mJ fiber laser system at 1.5 µm,” Opt. Lett. 24, 388–390 (1999). [CrossRef]
  6. M. Laroche, A. M. Chardon, J. Nilsson, D. P. Shepherd, W. A. Clarkson, S. Girard, and R. Moncorge, “Compact diode-pumped passively Q-switched tunable Er-Yb double-clad fiber laser,” Opt. Lett. 27, 1980–1982 (2002). [CrossRef]
  7. G. J. Spuhler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, and U. Keller, “Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers,” J. Opt. Soc. Am. B 16, 376–388 (1999). [CrossRef]
  8. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron. 10, 137–146 (2004). [CrossRef]
  9. D. P. Zhou, L. Wei, B. Dong, and W. K. Liu, “Tunable passively Q-switched Erbium-doped fiber laser with carbon nanotubes as a saturable absorber,” IEEE Photon. Technol. Lett. 22, 9–11 (2010). [CrossRef]
  10. Y. W. Song, S. Yamashita, C. S. Goh, and S. Y. Set, “Passively mode-locked lasers with 17.2 GHz fundamental-mode repetition rate pulsed by Carbon nanotubes,” Opt. Lett. 32, 430–432 (2007). [CrossRef]
  11. S. Yamashita, Y. Inoue, S. Maruyama, Y. Murakami, H. Yaguchi, M. Jablonski, and S. Y. Set, “Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates and fibers and their application to mode-locked fiber lasers,” Opt. Lett. 29, 1581–1583 (2004). [CrossRef]
  12. D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett. 98, 073106–073106-3 (2011). [CrossRef]
  13. B. Dong, C. Y. Liaw, J. Hao, and J. Hu, “Nanotube Q-switched low-threshold linear cavity tunable erbium-doped fiber laser,” Appl. Opt. 49, 5989–5992 (2010). [CrossRef]
  14. Z. Luo, M. Zhou, J. Weng, G. Huang, H. Xu, C. Ye, and Z. Cai, “Graphene-based passively Q-switched dual-wavelength erbium-doped fiber laser,” Opt. Lett. 35, 3709–3711 (2010). [CrossRef]
  15. Y. W. Song, S. Yamashita, C. S. Goh, and S. Y. Set, “Carbon nanotube mode-lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers,” Opt. Lett. 32, 148–150 (2007). [CrossRef]
  16. Y. W. Song, S. Yamashita, and S. Maruyama, “Single-walled carbon nanotubes for high-energy optical pulse formation,” Appl. Phys. Lett. 92, 021115–021115-3 (2008).
  17. Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “A graphene mode-locker for fiber lasers passively pulsed by evanescent field interation,” Appl. Phys. Lett. 96, 051122–051122-3 (2010).
  18. Y. W. Song, K. H. Fong, S. Y. Set, K. Kikuchi, and S. Yamashita, “Carbon nanotube-incorporated sol-gel glass for modulation of laser absorption,” Opt. Commun. 283, 3740–3742(2010).
  19. H. J. Kim, H. J. Choi, S. M. Nam, and Y. W. Song, “High-performance laser mode-locker with glass-hosted SWNTs realized by room-temperature aerosol deposition,” Opt. Express 19, 4762–4767 (2011).
  20. Y. Sakakibara, A. G. Rozhin, H. Kataura, Y. Achiba, and M. Tokumoto, “Carbon Nanotube-poly(vinylalcohol) nanocomposite film devices: applications for femtosecond fiber laser mode lockers and optical amplifier noise suppressors,” Jpn. J. Appl. Phys. Part 1 44, 1621–1625 (2005).
  21. K. Kieu and M. Mansuripur, “Femtosecond laser pulse generation with a fiber taper embedded in carbon nanotube/polymer composite,” Opt. Lett. 32, 2242–2244 (2007). [CrossRef]
  22. T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited