OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 3 — Jan. 20, 2012
  • pp: 302–305

Fabrication of two-dimensional superposed microstructure by interference lithography

Hao Lü, Qiu-Ling Zhao, Qing-Yue Zhang, Dong-Jie Niu, and Xia Wang  »View Author Affiliations


Applied Optics, Vol. 51, Issue 3, pp. 302-305 (2012)
http://dx.doi.org/10.1364/AO.51.000302


View Full Text Article

Enhanced HTML    Acrobat PDF (1136 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we report the basic theory and method of single exposure interference lithography (IL) to fabricate two-dimensional (2D) superposed microstructures. Distribution of six-beam interference intensities with different azimuth angle is discussed, and 2D superposed microstructures with different periodic constants are obtained by computer simulations. The experiment results using CHP-C positive photoresist show a 2D superposed photonic crystal composed of a periodically repeated hexagonal pattern of hexagonal lattice cells, which is in close agreement with the computer simulation. Fabrication of a superposed structure by single exposure IL paves the way for studying 2D photonic crystal fabrication, surface lasing, optical waveguides, and so on.

© 2012 Optical Society of America

OCIS Codes
(090.2880) Holography : Holographic interferometry
(120.4610) Instrumentation, measurement, and metrology : Optical fabrication
(160.5298) Materials : Photonic crystals

ToC Category:
Holography

History
Original Manuscript: July 28, 2011
Revised Manuscript: October 25, 2011
Manuscript Accepted: October 25, 2011
Published: January 16, 2012

Citation
Hao Lü, Qiu-Ling Zhao, Qing-Yue Zhang, Dong-Jie Niu, and Xia Wang, "Fabrication of two-dimensional superposed microstructure by interference lithography," Appl. Opt. 51, 302-305 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-3-302


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987). [CrossRef]
  3. A. Sharkawy, S. Y. Shi, and D. W. Prather, “Heterostructure photonic crystals: theory and applications,” Appl. Opt. 41, 7245–7253 (2002). [CrossRef]
  4. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, J. A. Ozin, O. Toader, and H. M. Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000). [CrossRef]
  5. S. Kedia, R. Vijaya, A. K. Ray, and S. Sinha, “Emission studies in double-layered and triple-layered photonic crystal microcavities,” Appl. Opt. 50, E86–E91 (2011). [CrossRef]
  6. L. Ferrier, O. E. Daif, X. Letartre, P. R. Romeo, C. Seassal, R. Mazurczyk, and P. Viktorovitch, “Surface emitting microlaser based on 2D photonic crystal rod lattices,” Opt. Express 17, 9780–9788 (2009). [CrossRef]
  7. H.-G. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nature 2, 622–626 (2008). [CrossRef]
  8. Y. D. Wu, M. L. Huang, and T. T. Shih, “Optical interleavers based on two-dimensional photonic crystals,” Appl. Opt. 46, 7212–7217 (2007). [CrossRef]
  9. E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, and M. Notomi, “Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers,” Appl. Phys. Lett. 93, 111112 (2008). [CrossRef]
  10. M. S. Rill, C. Plet, M. Thiel, I. Staude, G. V. Freymann, S. Linden, and M. Wegner, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7, 543–546 (2008). [CrossRef]
  11. M. D. Vittorio, M. T. Todaroa, T. Stomeo, R. Cingolani, D. Cojoc, and E. D. Fabrizio, “Two-dimensional photonic crystal waveguide obtained by e-beam direct writing of SU8-2000 photoresist,” Microelectron. Eng. 73–74, 388–391 (2004). [CrossRef]
  12. A. Birner, U. Grüning, S. Ottow, A. Schneider, F. Müller, V. Lehmann, H. Föll, and U. Gösele, “Macroporous silicon: a two-dimensional photonic bandgap material suitable for the near-infrared spectral range,” Phys. Stat. Solidi A 165, 111–117 (1998). [CrossRef]
  13. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfeld, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000). [CrossRef]
  14. X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212 (2003). [CrossRef]
  15. Y. Liu, S. Liu, and X. S. Zhang, “Fabrication of three-dimensional photonic crystals with two-beam holographic lithography,” Appl. Opt. 45, 480–483 (2006). [CrossRef]
  16. Y. K. Lin, D. Rivera, Z. Poole, and K. P. Chen, “Five-beam interference pattern controlled through phases and wave vectors for diamondlike photonic crystals,” Appl. Opt. 45, 7971–7976 (2006). [CrossRef]
  17. X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, “Large-area two-dimensional mesoscale quasi-crystal,” Adv. Mater. 15, 1526–1528 (2003). [CrossRef]
  18. X. Wang, J. Xu, J. C. W. Lee, E. K. Pang, and W. Y. Tam, “Realization of optical periodic quasicrystals using holographic lithography,” Appl. Phys. Lett. 88, 051901 (2006). [CrossRef]
  19. W. D. Mao, J. W. Dong, Y. C. Zhong, G. Q. Liang, and H. Z. Wang, “Formation principles of two-dimensional compound photonic lattices by one-step holographic lithography,” Opt. Express 13, 2994–2999 (2005) . [CrossRef]
  20. G. Q. Liang, W. D. Mao, Y. Y. Pu, H. Zou, and H. Z. Wang, “Fabrication of two-dimensional coupled photonic crystal resonator arrays by holographic lithography,” Appl. Phys. Lett. 89, 041902 (2006). [CrossRef]
  21. H. Altug and J. Vučkovič, “Two-dimensional coupled photonic crystal resonator arrays,” Appl. Phys. Lett. 84, 161–163 (2004). [CrossRef]
  22. H. Altug and J. Vučkovič, “Polarization control and sensing with two-dimensional coupled photonic crystal microcavity arrays,” Opt. Lett. 30, 982–984 (2005). [CrossRef]
  23. T. D. Happ, M. Kamp, A. Forchel, J.-L. Gentner, and L. Goldstein, “Two-dimensional photonic crystal coupled-defect laser diode,” Appl. Phys. Lett. 82, 4–6 (2003). [CrossRef]
  24. H. Altug and J. Vučkovič, “Experimental demonstration of the slow group velocity of light in two-dimensional coupled photonic crystal microcavity arrays,” Appl. Phys. Lett. 86, 111102 (2005). [CrossRef]
  25. H. H. Solak, “Space-invariant multiple-beam achromatic EUV interference lithography,” Microelectron. Eng. 78–79, 410–416 (2005). [CrossRef]
  26. N. D. Lai, J. H. Lin, and C. C. Hsu, “Fabrication of highly rotational symmetric superposed structures by multiexposure of a three-beam interference technique,” Appl. Opt. 46, 5645–5648 (2007). [CrossRef]
  27. W. Y. Tam, “Icosahedral quasicrystals by optical interference holography,” Appl. Phys. Lett. 89, 251111 (2006). [CrossRef]
  28. A. Jimenez-Ceniceros, M. Trejo-Duran, E. Alvarado-Mendez, and V. M. Castano, “Extinction zones and scalability in N-beam interference lattices,” Opt. Commun. 283, 362–367 (2010). [CrossRef]
  29. L. J. Wu, Y. C. Zhong, K. S. Wong, G. P. Wang, and L. Yuan, “Fabrication of hetero-binary and honeycomb photonic crystals by one-step holographic lithography,” Appl. Phys. Lett. 88, 09115 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited