OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 3 — Jan. 20, 2012
  • pp: 365–369

Delta-doped electron-multiplied CCD with absolute quantum efficiency over 50% in the near to far ultraviolet range for single photon counting applications

Shouleh Nikzad, Michael E. Hoenk, Frank Greer, Blake Jacquot, Steve Monacos, Todd J. Jones, Jordana Blacksberg, Erika Hamden, David Schiminovich, Chris Martin, and Patrick Morrissey  »View Author Affiliations


Applied Optics, Vol. 51, Issue 3, pp. 365-369 (2012)
http://dx.doi.org/10.1364/AO.51.000365


View Full Text Article

Enhanced HTML    Acrobat PDF (208 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have used molecular beam epitaxy (MBE) based delta-doping technology to demonstrate nearly 100% internal quantum efficiency (QE) on silicon electron-multiplied charge-coupled devices (EMCCDs) for single photon counting detection applications. We used atomic layer deposition (ALD) for antireflection (AR) coatings and achieved atomic-scale control over the interfaces and thin film materials parameters. By combining the precision control of MBE and ALD, we have demonstrated more than 50% external QE in the far and near ultraviolet in megapixel arrays. We have demonstrated that other important device performance parameters such as dark current are unchanged after these processes. In this paper, we briefly review ultraviolet detection, report on these results, and briefly discuss the techniques and processes employed.

© 2012 Optical Society of America

OCIS Codes
(040.0040) Detectors : Detectors
(040.6070) Detectors : Solid state detectors
(040.7190) Detectors : Ultraviolet
(160.0160) Materials : Materials
(250.0250) Optoelectronics : Optoelectronics
(310.0310) Thin films : Thin films

ToC Category:
Detectors

History
Original Manuscript: July 19, 2011
Manuscript Accepted: September 2, 2011
Published: January 20, 2012

Virtual Issues
Vol. 7, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Shouleh Nikzad, Michael E. Hoenk, Frank Greer, Blake Jacquot, Steve Monacos, Todd J. Jones, Jordana Blacksberg, Erika Hamden, David Schiminovich, Chris Martin, and Patrick Morrissey, "Delta-doped electron-multiplied CCD with absolute quantum efficiency over 50% in the near to far ultraviolet range for single photon counting applications," Appl. Opt. 51, 365-369 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-3-365


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. McClintock, J. L. Pau, C. Bayram, B. Fain, P. Giedraitis, M. Razeghi, and M. P. Ulmer, “III-nitride avalanche photodiodes,” Proc. SPIE 7222, 72220U (2009). [CrossRef]
  2. J. C. Carrano, D. J. H. Lambert, C. J. Eiting, C. J. Collins, T. Li, S. Wang, B. Yang, A. L. Beck, R. D. Dupuis, and J. C. Campbell, “GaN avalanche photodiodes,” Appl. Phys. Lett. 76, 924–926 (2000). [CrossRef]
  3. R. M. Field, J. Larry, J. Cohn, L. Paninski, and K. L. Shepard, “A low-noise, single-photon avalanche diode in standard 0.13 μm complementary metal-oxide-semiconductor process,” Appl. Phys. Lett. 97, 211111 (2010). [CrossRef]
  4. J. Hynecek, “Impactron—A new solid state image intensifier,” IEEE Trans. Electron Devices 48, 2238–2241 (2001). [CrossRef]
  5. P. Jerram, P. Pool, R. Bell, D. Burt, S. Browring, S. Spencer, M. Hazelwood, I. Moody, N. Catlett, and P. Heyes, “The LLCCD: low light imaging without the need for an intensifier,” Proc. SPIE 4306, 178–186 (2001). [CrossRef]
  6. C. D. Mackay, R. N. Tubbs, R. Bell, D. Burt, P. Jerram, and I. Moody, “Sub-electron read noise at MHz pixel rates,” Proc. SPIE 4306, 289–298 (2001). [CrossRef]
  7. C. Niclass, A. Rochas, P. A. Besse, and E. Charbon, “Design and characterization of a CMOS 3-D image sensor based on single photon avalanche diodes,” IEEE J. Solid-State Circuits 40, 1847–1854 (2005). [CrossRef]
  8. N. Faramarzpour, M. J. Deen, S. Shirani, and Q. Fang, “Fully integrated single photon avalanche diode detector in standard CMOS 0.18 μm technology,” IEEE Trans. Electron Devices 55, 760–767 (2008). [CrossRef]
  9. M. E. Hoenk, P. J. Grunthaner, F. J. Grunthaner, R. W. Terhune, M. Fattahi, and H. F. Tseng, “Growth of a delta-doped silicon layer by molecular-beam epitaxy on a charge-coupled device for reflection-limited ultraviolet quantum efficiency,” Appl. Phys. Lett. 61, 1084–1086 (1992). [CrossRef]
  10. J. Blacksberg, M. E. Hoenk, S. T. Elliott, S. E. Holland, and S. Nikzad, “Enhanced QE of high purity silicon imagers by ultralow temperature surface modification using Sb-doping,” Appl. Phys. Lett. 87, 254101 (2005). [CrossRef]
  11. S. Nikzad, M. E. Hoenk, P. J. Grunthaner, R. W. Terhune, F. J. Grunthaner, R. Wizenread, M. Fattahi, and H-F. Tseng, “Delta-doped CCDs: high QE with long-term stability at UV and visible wavelengths,” Proc. SPIE 2198, 907–915 (1994). [CrossRef]
  12. E. T. Hamden, F. Greer, M. E. Hoenk, J. Blacksberg, M. R. Dickie, S. Nikzad, C. Martin, and D. Schiminovich, “UV anti-reflection coatings for use in silicon detector design,” Appl. Opt.50, 4180–4188 (2011).
  13. F. Greer, E. Hamden, B. C. Jacquot, M. E. Hoenk, J. Blacksberg, S. P. Monacos, M. R. Dickie, D. Schiminovich, and S. Nikzad, manuscript in preparation for Nature Nanotechnology.
  14. M. E. Hoenk, T. J. Jones, M. R. Dickie, F. Greer, T. J. Cunningham, E. R. Blazejewski, and S. Nikzad, “Delta-doped back-illuminated CMOS imaging arrays: progress and prospects,” Proc. SPIE 7419, 74190T (2009). [CrossRef]
  15. B. C. Jacquot, S. P. Monacos, T. J. Jones, J. Blacksberg, M. E. Hoenk, and S. Nikzad, “Characterization and absolute QE measurements of delta-doped N-channel and P-channel CCDs,” Proc. SPIE 7742, 774201 (2010).
  16. B. C. Jacquot, S. P. Monacos, M. E. Hoenk, F. Greer, T. J. Jones, and S. Nikzad, “A system and methodologies for absolute quantum efficiency measurements from the vacuum ultraviolet through the near infrared,” Rev. Sci. Instrum. 82, 043102 (2011). [CrossRef]
  17. S. M. Baggett, J. W. MacKenty, R. A. Kimble, T. Borders, B. Hilbert, S. Deustua, V. Kozhurina-Platais, K. S. Long, A. Riess, R. Gilliland, R. J. Hill, and J. Kalirai, “WFC3 detectors: on-orbit performance,” Proc. SPIE 7731, 773138 (2010).
  18. N. R. Collins, N. Boehm, G. Delo, R. D. Foltz, R. J. Hill, E. Kan, R. A. Kimble, E. Malumuth, R. Rosenberry, A. Waczynski, Y. Wen, S. Baggett, H. Bushouse, S. Deustua, J. Kim-Quijano, J. MacKenty, A. Martel, and E. Sabbi, “Wide field camera 3 CCD quantum efficiency hysteresis: characterization and mitigation,” Proc. SPIE 7439, 74390 (2009).
  19. L. R. Canfield, R. E. Vest, R. Korde, H. Schmidtke, and R. Desor, “Absolute silicon photodiodes for 160 nm to 254 nm photons,” Metrologia 35, 329–334 (1998). [CrossRef]
  20. J. R. Janesick, Photon Transfer : DN [lambda] (SPIE, 2007).
  21. P. F. Morrissey, S. R. McCandliss, and P. D. Feldman, “Vacuum-ultraviolet quantum efficiency of a thinned, backside-illuminated charge-coupled device,” Appl. Opt. 34, 4640–4650(1995). [CrossRef]
  22. S. Nikzad, T. J. Cunningham, M. E. Hoenk, R. P. Ruiz, D. M. Soules, and S. E. Holland, “Direct detection of 0.1–20 keV electrons with delta doped, fully depleted, high purity silicon p-i-n diode arrays,” Appl. Phys. Lett. 89, 182114–182116 (2006). [CrossRef]
  23. C. Martin, T. Barlow, T. Conrow, K. Forster, P. G. Friedman, R. McLean, M. Morais, , P. F. Morrissey, F. Raison, D. Schiminovich, T. Small, T. Wyder, and C. K. Xu, “The Galaxy Evolution Explorer,” Proc. SPIE 4854, 336–350 (2003). [CrossRef]
  24. D. C. Martin, M. Seibert, J. D. Neill, D. Schiminovich, K. Forster, R. M. Rich, B. Y. Welsh, B. F. Madore, J. M. Wheatley, P. Morrissey, and T. A. Barlow, “A turbulent wake as a tracer of 30,000 years of Mira’s mass loss history,” Nature 448, 780–783 (2007). [CrossRef]
  25. e2v_technologies, e2V Low-Light Technical Note 4: Dark Signal and Clock-Induced Charge in L3VisionTM CCD Sensors (2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited