OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 3 — Jan. 20, 2012
  • pp: 370–377

Analysis of molecular dynamics of colloidal particles in transported dilute samples by self-mixing laser Doppler velocimetry

Seiichi Sudo, Takayuki Ohtomo, Masao Iwamatsu, Tuyoshi Osada, and Kenju Otsuka  »View Author Affiliations

Applied Optics, Vol. 51, Issue 3, pp. 370-377 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (639 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Colloidal particles in a liquid medium are transported with constant velocity, and dynamic light scattering experiments are performed on the samples by self-mixing laser Doppler velocimetry. The power spectrum of the modulated wave induced by the motion of the colloidal particles cannot be described by the well-known formula for flowing Brownian motion systems, i.e., a combination of Doppler shift, diffusion, and translation. Rather, the power spectrum was found to be described by the q-Gaussian distribution function. The molecular mechanism resulting in this anomalous line shape of the power spectrum is attributed to the anomalous molecular dynamics of colloidal particles in transported dilute samples, which satisfy a nonlinear Langevin equation.

© 2012 Optical Society of America

OCIS Codes
(000.2690) General : General physics
(280.3340) Remote sensing and sensors : Laser Doppler velocimetry
(290.5840) Scattering : Scattering, molecules
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:

Original Manuscript: July 21, 2011
Revised Manuscript: October 7, 2011
Manuscript Accepted: October 11, 2011
Published: January 20, 2012

Virtual Issues
Vol. 7, Iss. 3 Virtual Journal for Biomedical Optics

Seiichi Sudo, Takayuki Ohtomo, Masao Iwamatsu, Tuyoshi Osada, and Kenju Otsuka, "Analysis of molecular dynamics of colloidal particles in transported dilute samples by self-mixing laser Doppler velocimetry," Appl. Opt. 51, 370-377 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. E. Drain, The Laser Doppler Technique (Wiley, 1980).
  2. K. Otsuka, “Effects of external perturbations on LiNdP4O12 lasers,” IEEE J. Quantum Electron. QE-15, 655–663 (1979). [CrossRef]
  3. K. Otsuka, R. Kawai, Y. Asakawa, and T. Fukazawa, “Highly sensitive self-mixing measurement of Brillouin scattering with a laser-diode-pumped microchip LiNdP4O12 laser,” Opt. Lett. 24, 1862–1864 (1999). [CrossRef]
  4. K. Otsuka, K. Abe, J.-Y. Ko, and T.-S. Lim, “Real-time nanometer-vibration measurement with a self-mixing microchip solid-state laser,” Opt. Lett. 27, 1339–1341 (2002). [CrossRef]
  5. S. Sudo, Y. Miyasaka, K. Otsuka, Y. Takahashi, T. Oishi, and J.-Y. Ko, “Quick and easy measurement of particle size of Brownian particles and planktons in water using a self-mixing laser,” Opt. Express 14, 1044–1054 (2006). [CrossRef]
  6. T. Ohtomo, S. Sudo, and K. Otsuka, “Three-channel three-dimensional self-mixing thin-slice solid-state laser-Doppler measurements,” Appl. Opt. 48, 609–616 (2009). [CrossRef]
  7. S. Sudo, Y. Miyasaka, K. Nemoto, K. Kamikariya, and K. Otsuka, “Detection of small particles in fluid flow using a self-mixing laser,” Opt. Express 15, 8135–8145 (2007). [CrossRef]
  8. D. P. Chowdhury, C. M. Sorensen, T. W. Taylor, J. F. Merklin, and T. W. Lester, “Application of photon correlation spectroscopy to flowing Brownian motion systems,” Appl. Opt. 23, 4149–4154 (1984). [CrossRef]
  9. T. W. Taylor and C. M. Sorensen, “Gaussian beam effects on the photon correlation spectrum from a flowing Brownian motion system,” Appl. Opt. 25, 2421–2426 (1986). [CrossRef]
  10. H. Wang, J. Shen, B. Wang, B. Yu, and Y. Xu, “Laser diode feedback interferometry in flowing Brownian motion system: a novel theory,” Appl. Phys. B 101, 173–183 (2010). [CrossRef]
  11. B. J. Berne and R. Pecora, Dynamic Light Scattering with Applications to Chemistry, Biology and Physics (Wiley-Interscience, 1976), Chap. 5.
  12. F. T. Arecchi, “Photocount distributions and field statistics,” in Quantum Optics, R. J. Glauber, ed. (Academic, 1969).
  13. M. G. Mazza, N. Givambattista, H. E. Stankey, and F. W. Starr, “Connection of translational and rotational dynamical heterogeneities with the breakdown of the Stokes-Einstein and Stokes-Einstein-Debye relations in water,” Phys. Rev. E 76, 031203 (2007). [CrossRef]
  14. B. Liu and J. Goree, “Superdiffusion and non-Gaussian statistics in a driven-dissipative 2D dusty plasma,” Phys. Rev. Lett. 100, 055003 (2008). [CrossRef]
  15. T. H. Solomon, E. R. Weeks, and H. L. Swinney, “Observations of anomalous diffusion and Lévy flights in a two-dimensional rotating flow,” Phys. Rev. Lett. 71, 3975–3978 (1993). [CrossRef]
  16. S. Ratynskaia, K. Rypdal, C. Knapek, S. Khrapak, A. V. Milovanov, A. Ivlev, J. J. Rasmussen, and G. E. Morfill, “Superdiffusion and viscoelastic vortex flows in a two-dimensional complex plasma,” Phys. Rev. Lett. 96, 105010 (2006). [CrossRef]
  17. C. Tsallis, “Non-extensive thermostatistics: brief review and comments,” Physica A 221, 277–290 (1995). [CrossRef]
  18. C. Tsallis, “Possible generalization of Boltzmann-Gibbs statistics,” J. Stat. Phys. 52, 479–487 (1988). [CrossRef]
  19. C. Tsallis, R. S. Mendes, and A. R. Plastino, “The role of constraints within generalized nonextensive statistics,” Physica A 261, 534–554 (1998). [CrossRef]
  20. J. A. Marsh, M. A. Fuentes, L. G. Moyano, and C. Tsallis, “Influence of global correlations on central limit theorems and entropic extensivity,” Physica A 372, 183–202 (2006). [CrossRef]
  21. U. Tirnakli, C. Beck, and C. Tsallis, “Central limit behavior of deterministic dynamical systems,” Phys. Rev. E 75, 040106 (2007). [CrossRef]
  22. A. Pluchino, A. Rapisarda, and C. Tsallis, “Nonergodicity and central-limit behavior for long-range Hamiltonians,” Eur. Phys. Lett. 80, 26002 (2007).
  23. L. G. Moyano, and C. Anteneodo, “Diffusive anomalies in a long-range Hamiltonian system,” Phys. Rev. E 74, 021118 (2006). [CrossRef]
  24. L. C. Malacarne, R. S. Mendes, E. K. Lenza, S. Picoli, and J. P. Dal Molin, “A non-Gaussian model in polymeric network,” Eur. Phys. J. E 20, 395 (2006). [CrossRef]
  25. A. Razdan, “q-Gaussian representation of non-Lorentzian Mössbauer lineshapes,” Hyperfine Interact. 188, 103–106 (2009). [CrossRef]
  26. C. Beck, “Dynamical foundations of nonextensive statistical mechanics,” Phys. Rev. Lett. 87, 180601 (2001). [CrossRef]
  27. M. Ausloos and K. Ivanova, “Dynamical model and nonextensive statistical mechanics of a market index on large time windows,” Phys. Rev. E 68, 046122 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited