OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 3 — Jan. 20, 2012
  • pp: 378–384

Iterative phase retrieval strategy of transient events

Tuck Wah Ng and Adrian Sau Ling Chua,  »View Author Affiliations


Applied Optics, Vol. 51, Issue 3, pp. 378-384 (2012)
http://dx.doi.org/10.1364/AO.51.000378


View Full Text Article

Enhanced HTML    Acrobat PDF (808 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Important nuances of a process or processes in action can be obtained from the phase retrieval of diffraction patterns for analysis of transient events. A significant limitation associated with the iterative approach is that predictive input functions are needed and can result in situations of nonconvergence. In dealing with a transient event recorded as a series of Fourier magnitude patterns, such a hit-and-miss characteristic, on the surface, appears computationally daunting. We report and demonstrate a strategy here that effectively minimizes this by using a prior retrieved frame as the predictive function for the current retrieval process.

© 2012 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(100.5070) Image processing : Phase retrieval

ToC Category:
Image Processing

History
Original Manuscript: July 25, 2011
Revised Manuscript: October 20, 2011
Manuscript Accepted: October 20, 2011
Published: January 20, 2012

Citation
Tuck Wah Ng and Adrian Sau Ling Chua, "Iterative phase retrieval strategy of transient events," Appl. Opt. 51, 378-384 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-3-378


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. C. Newton, R. Harder, X. Huang, G. Xiong, and I. K. Robinson, “Phase retrieval of diffraction from highly strained crystals,” Phys. Rev. B 82, 165 436 (2010). [CrossRef]
  2. D. Montiel, M. Sutton, and M. Grant, “Phase retrieval from speckle patterns of ordering systems,” Phys. Rev. E 80, 041112 (2009). [CrossRef]
  3. J. M. Zuo, I. Vartanyants, M. Gao, R. Zhang, and L. A. Nagahara, “Atomic resolution imaging of a single double-wall carbon nanotube from diffraction intensities,” Science 300, 1419–1421 (2003). [CrossRef]
  4. A. V. Zozulya, O. M. Yefanov, I. A. Vartanyants, K. Mundboth, C. Mocuta, T. H. Metzger, J. Stangl, G. Bauer, T. Boeck, and M. Schmidbauer, “Imaging of nanoislands in coherent grazing-incidence small-angle x-ray scattering experiments,” Phys. Rev. B 78, 121304 (2008). [CrossRef]
  5. X. Rondeau, E. Thiébaut, M. Tallon, and R. A. Foy, “Phase retrieval from speckle images,” J. Opt. Soc. Am. A 24, 3354–3365 (2007). [CrossRef]
  6. W. Gong and S. Han, “Phase-retrieval ghost imaging of complex-valued objects,” Phys. Rev. A 82, 023828 (2010). [CrossRef]
  7. R. Borghi, F. Gori, and M. Santarsiero, “Phase and amplitude retrieval in ghost diffraction from field-correlation measurements,” Phys. Rev. Lett. 96, 183901 (2006). [CrossRef]
  8. J. Miao, K. O. Hodgson, and D. Sayre, “An approach to three-dimensional structures of biomolecules by using single-molecule diffraction images,” Proc. Natl. Acad. Sci. USA 98, 6641–6645 (2001). [CrossRef]
  9. Y. Nishino, Y. Takahashi, N. Imamoto, T. Ishikawa, and K. Maeshima, “Three-dimensional visualization of a human chromosome using coherent x-ray diffraction,” Phys. Rev. Lett. 102, 018101 (2009). [CrossRef]
  10. D. Pliakis and S. Minardi, “Phase front retrieval by means of an iterative shadowgraphic method,” J. Opt. Soc. Am. A 26, 99–107 (2009). [CrossRef]
  11. F. Hüe, J. M. Rodenburg, A. M. Maiden, F. Sweeney, and P. A. Midgley, “Wave-front phase retrieval in transmission electron microscopy via ptychography,” Phys. Rev. B 82, 121415 (2010). [CrossRef]
  12. N. Nakajima, “Phase retrieval from a high-numerical-aperture intensity distribution by use of an aperture-array filter,” J. Opt. Soc. Am. A 26, 2172–2180 (2009). [CrossRef]
  13. G. Pedrini, F. Zhang, and W. Osten, “Phase retrieval by pinhole scanning,” Opt. Lett. 36, 1113–1115 (2011). [CrossRef]
  14. Y. Liu, B. Chen, E. Li, J. Wang, A. Marcelli, S. W. Wilkins, H. Ming, Y. Tian, K. A. Nugent, P. Zhu, and Z. Wu, “Phase retrieval in x-ray imaging based on using structured illumination,” Phys. Rev. A 78, 023817 (2008). [CrossRef]
  15. W. McBride, N. L. O’Leary, and L. J. Allen, “Retrieval of a complex-valued object from its diffraction pattern,” Phys. Rev. Lett. 93, 233902 (2004). [CrossRef]
  16. C.-C. Chen, J. Miao, C. W. Wang, and T. K. Lee, “Application of the optimization technique to non-crystalline x-ray diffraction microscopy—Guided Hybrid Input-Output Method (GHIO),” Phys. Rev. B 76, 064113 (2007). [CrossRef]
  17. K. Kawahara, K. Gohara, Y. Maehara, T. Dobashi, and O. Kamimura, “Beam-divergence deconvolution for diffractive imaging,” Phys. Rev. B 81, 081404 (2010). [CrossRef]
  18. B. Chen, J. K. Stamnes, A. J. Devaney, H. M. Pedersen, and K. Stamnes, “Reconstruction algorithm for diffraction tomography of diffuse photon density waves in a random medium,” Pure Appl. Opt. 7, 1161–1180 (1998). [CrossRef]
  19. C. Wu, T. W. Ng, and A. Neild, “Phase and amplitude retrieval of objects embedded in a sinusoidal background from its diffraction pattern,” Appl. Opt. 49, 1831–1837 (2010). [CrossRef]
  20. J. S. Wu and J. C. H. Spence, “Phasing diffraction data from a stream of hydrated proteins,” J. Opt. Soc. Am. A 22, 1453–1459 (2005). [CrossRef]
  21. M. J. Bogan, W. H. Benner, S. Boutet, U. Rohner, M. Frank, A. Barty, M. M. Seibert, F. Maia, S. Marchesini, S. Bajt, B. Woods, V. Riot, S. P. Hau-Riege, M. Svenda, E. Marklund, E. Spiller, J. Hajdu, and H. N. Chapman, “Single particle x-ray diffractive imaging,” Nano Lett. 8, 310–316 (2008). [CrossRef]
  22. J. Miao, D. Sayre, and H. N. Chapman, “Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects,” J. Opt. Soc. Am. A 15, 1662–1669 (1998). [CrossRef]
  23. D. Shapiro, P. Thibault, T. Beetz, V. Elser, M. Howells, C. Jacobsen, J. Kirz, E. Lima, H. Miao, A. M. Neiman, and D. Sayre, “Biological imaging by soft x-ray diffraction microscopy,” Proc. Natl. Acad. Sci. USA 102, 15343–15346 (2005). [CrossRef]
  24. A. Neild, J. T. Padding, Y. Lu, B. Bhaduri, W. J. Briels, and T. W. Ng, “Translational and rotational coupling in Brownian rods near a solid surface,” Phys. Rev. E 82, 041126 (2010). [CrossRef]
  25. B. Bhaduri, A. Neild, and T. W. Ng, “Directional Brownian diffusion dynamics in carbon nanofibers,” Appl. Phys. Lett. 92, 084105 (2008). [CrossRef]
  26. R. D. Luggar, J. A. Horrocks, R. D. Speller, and R. J. Lacey, “Determination of the geometric blurring of an energy x-ray diffraction (EDXRD) system and its use in the simulation of experimentally derived diffraction profiles,” Nucl. Instrum. Methods Phys. Res. A 383, 610–618 (1996). [CrossRef]
  27. S. V. Tipnis, V. V. Nagarkar, V. Gaysinskiy, S. R. Miller, and I. Shestakova, “High-speed x-ray imaging camera for time-resolved diffraction studies,” IEEE Trans. Nucl. Sci. 49, 2415–2419 (2002). [CrossRef]
  28. M. Bergh, G. Huldt, N. Timneanu, F. R. N. C. Maia, and J. Hajdu, “Feasibility of imaging living cells at subnanometer resolutions by ultrafast x-ray diffraction,” Q. Rev. Biophys. 41, 181–204 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MPG (2544 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited