OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 30 — Oct. 20, 2012
  • pp: 7183–7187

Incoherent pump assisted atomic filter based on laser-induced optical anisotropy

Shuangqiang Liu and Yundong Zhang  »View Author Affiliations

Applied Optics, Vol. 51, Issue 30, pp. 7183-7187 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (480 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe the effects of incoherent pump on an atomic filter based on laser-induced optical anisotropy in a three-level ladder system interacting with a strong pump polarized circularly and a weak probe polarized linearly. According to the analysis of the numerical simulation results with some comparison, at the same time of eliminating noise, the filter can enhance the probe’s transmission or even the probe gain can be achieved without population inversion. Moreover, the incoherent pumping rate and the cell temperature performance are evaluated and measures are taken to improve the filter’s transmission and tunability by selecting proper parameters.

© 2012 Optical Society of America

OCIS Codes
(120.2440) Instrumentation, measurement, and metrology : Filters
(260.1440) Physical optics : Birefringence
(300.6210) Spectroscopy : Spectroscopy, atomic
(300.6320) Spectroscopy : Spectroscopy, high-resolution

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: April 26, 2012
Revised Manuscript: September 3, 2012
Manuscript Accepted: September 15, 2012
Published: October 12, 2012

Shuangqiang Liu and Yundong Zhang, "Incoherent pump assisted atomic filter based on laser-induced optical anisotropy," Appl. Opt. 51, 7183-7187 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Fleischhauer, C. H. Keitel, M. O. Scully, and C. Su, “Lasing without inversion and enhancement of the index of refraction via interference of incoherent pump processes,” Opt. Commun. 87, 109–114 (1992). [CrossRef]
  2. M. Mahmoudi, M. Sahrai, and H. Tajalli, “Subluminal and superluminal light propagation via interference of incoherent pump fields,” Phys. Lett. A 357, 66–71 (2006). [CrossRef]
  3. M. Mahmoudi, M. Sahrai, and H. Tajalli, “The effects of the incoherent pumping field on the phase control of group velocity,” J. Phys. B 39, 1825–1835 (2006). [CrossRef]
  4. M. Sahrai, M. Sharifi, and M. Mahmoudi, “The effect of an incoherent pumping on the dispersive and absorptive properties of a four-level medium,” J. Phys. B 42, 185501 (2009). [CrossRef]
  5. M. Pinard, G. Wasik, W. Gawlik, and J. Zachorowski, “Amplification without inversion in a medium with collisional dephasing,” Phys. Rev. A 59, 848–858 (1999). [CrossRef]
  6. Y. Q. Xu and S. G. Murdoch, “Gain spectrum of an optical parametric amplifier with a temporally incoherent pump,” Opt. Lett. 35, 169–171 (2010). [CrossRef]
  7. C. Fort, F. S. Cataliotti, T. W. Hänsch, M. Inguscio, and M. Prevedelli, “Gain without inversion on the cesium D1 line,” Opt. Commun. 139, 31–34 (1997). [CrossRef]
  8. G. Vemuri, K. V. Vasavada, and G. S. Agarwal, “Lasing without inversion in the absence of a coherent coupling field,” Phys. Rev. A 52, 3228–3230 (1995). [CrossRef]
  9. J. A. Gelbwachs, “Atomic resonance filters,” IEEE J. Quantum Electron. 24, 1266–1277 (1988). [CrossRef]
  10. J. Tang, Q. Wang, Y. Li, L. Zhang, J. Gan, M. Duan, J. Kong, and L. Zheng, “Experimental study of a model digital space optical communication system with new quantum devices,” Appl. Opt. 34, 2619–2622 (1995). [CrossRef]
  11. H. Chen, M. A. White, David. A. Krugger, and C. Y. She, “Daytime mesopause temperature measurements with a sodium-vapor dispersive Faraday filter in a lidar receiver,” Opt. Lett. 21, 1093–1095 (1996). [CrossRef]
  12. C. Fricke-Begemann, M. Alpers, and J. Höffner, “Daylight rejection with a new receiver for potassium resonance temperature lidars,” Opt. Lett. 27, 1932–1934 (2002). [CrossRef]
  13. J. Höffner and C. Fricke-Begemann, “Accurate lidar temperature with narrowband filters,” Opt. Lett. 30, 890–892 (2005). [CrossRef]
  14. A. Landolt and T. Roesgen, “Anomalous dispersion in atomic line filters applied for spatial frequency detection,” Appl. Opt. 48, 5948–5955 (2009). [CrossRef]
  15. J. S. Neergaard-Nielsen, B. M. Nielsen, H. Takahashi, A. I. Vistnes, and E. S. Polzik, “High purity bright single photon source,” Opt. Express 15, 7940–7949 (2007). [CrossRef]
  16. X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008). [CrossRef]
  17. F. Wolfframm, X. Xing, A. Cere, A. Predojevic, A. M. Steinberg, and M. W. Mitchell, “Bright filter-free source of indistinguishable photon pairs,” Opt. Express 16, 18145–18151 (2008). [CrossRef]
  18. S. K. Gayen, R. I. Billmers, V. M. Contarino, M. F. Squicciarini, W. J. Scharpf, G. Yang, P. R. Herczfeld, and D. M. Allocca, “Induced-dichroism-excited atomic line filter at 532 nm,” Opt. Lett. 20, 1427–1429 (1995). [CrossRef]
  19. L. D. Turner, V. Karagnanov, and P. J. O. Teubner, “Sub-Doppler bandwidth atomic optical filter,” Opt. Lett. 27, 500–502 (2002). [CrossRef]
  20. A. Cerè, V. Parigi, M. Abad, F. Wolfgramm, A. Predojević, and M. W. Mitchell, “Narrowband tunable filter based on velocity-selective optical pumping in an atomic vapor,” Opt. Lett. 34, 1012–1014 (2009). [CrossRef]
  21. Z. S. He, Y. D. Zhang, H. Wu, P. Yuan, and S. Q. Liu, “Theoretical model for an atomic optical filter based on optical anisotropy,” J. Opt. Soc. Am. B 26, 1755–1759 (2009). [CrossRef]
  22. S. Q. Liu, Y. D. Zhang, H. Wu, and P. Yuan, “Atomic filter with large scale tunability,” J. Opt. Soc. Am. B 28, 1100–1103 (2011). [CrossRef]
  23. S. Q. Liu, Y. D. Zhang, D. K. Fan, H. Wu, and P. Yuan, “The selective optical pumping process in Doppler-broadened atoms,” Appl. Opt. 50, 1620–1624 (2011). [CrossRef]
  24. C. L. Chen and A. V. Phelps, “Self-broadening of cesium resonance lines at 8521 and 8944 Å,” Phys. Rev. 173, 62–69 (1968). [CrossRef]
  25. C. B. Alcock, V. P. Itkin, and M. K. Horrigan, “Vapor pressure equations for the metallic elements: 298–2500 K,” Can. Metall. Q. 23, 309–313 (1984). [CrossRef]
  26. P. Yeh, “Dispersive magneto-optic filters,” Appl. Opt. 21, 2069–2075 (1982). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited