OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 30 — Oct. 20, 2012
  • pp: 7236–7245

Fluorescence volume imaging with an axicon: simulation study based on scalar diffraction method

Juanjuan Zheng, Yanlong Yang, Ming Lei, Baoli Yao, Peng Gao, and Tong Ye  »View Author Affiliations

Applied Optics, Vol. 51, Issue 30, pp. 7236-7245 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1289 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In a two-photon excitation fluorescence volume imaging (TPFVI) system, an axicon is used to generate a Bessel beam and at the same time to collect the generated fluorescence to achieve large depth of field. A slice-by-slice diffraction propagation model in the frame of the angular spectrum method is proposed to simulate the whole imaging process of TPFVI. The simulation reveals that the Bessel beam can penetrate deep in scattering media due to its self-reconstruction ability. The simulation also demonstrates that TPFVI can image a volume of interest in a single raster scan. Two-photon excitation is crucial to eliminate the signals that are generated by the side lobes of Bessel beams; the unwanted signals may be further suppressed by placing a spatial filter in the front of the detector. The simulation method will guide the system design in improving the performance of a TPFVI system.

© 2012 Optical Society of America

OCIS Codes
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(260.1960) Physical optics : Diffraction theory
(290.5850) Scattering : Scattering, particles

ToC Category:

Original Manuscript: March 6, 2012
Revised Manuscript: September 13, 2012
Manuscript Accepted: September 21, 2012
Published: October 15, 2012

Juanjuan Zheng, Yanlong Yang, Ming Lei, Baoli Yao, Peng Gao, and Tong Ye, "Fluorescence volume imaging with an axicon: simulation study based on scalar diffraction method," Appl. Opt. 51, 7236-7245 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990). [CrossRef]
  2. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Meth. 2, 932–940 (2005). [CrossRef]
  3. A. K. Dunn, V. P. Wallace, M. Coleno, M. W. Berns, and B. J. Tromberg, “Influence of optical properties on two-photon fluorescence imaging in turbid samples,” Appl. Opt. 9, 1194–1201 (2000). [CrossRef]
  4. N. Olivier, A. Mermillod-Blondin, C. B. Arnold, and E. Beaurepaire, “Two-photon microscopy with simultaneous standard and extended depth of field using a tunable acoustic gradient-index lens,” Opt. Lett. 34, 1684–1686 (2009). [CrossRef]
  5. E. Haustein and P. Schwille, “Trends in fluorescence imaging and related techniques to unravel biological information,” HFSP J. 1, 169–180 (2007). [CrossRef]
  6. P. Dufour, M. Piche, Y. De Koninck, and N. McCarthy, “Two-photon excitation fluorescence microscopy with a high depth of field using an axicon,” Appl. Opt. 45, 9246–9252 (2006). [CrossRef]
  7. E. J. Botcherby, R. Juskaitis, and T. Wilson, “Scanning two photon fluorescence microscopy with extended depth of field,” Opt. Commun. 268, 253–260 (2006). [CrossRef]
  8. J. Durnin, J. J. Miceli, and J. H. Eberly, “Comparison of Bessel and Gaussian beams,” Opt. Lett. 13, 79–80 (1988). [CrossRef]
  9. J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987). [CrossRef]
  10. T. Cizmar and K. Dholakia, “Tunable Bessel light modes: engineering the axial propagation,” Opt. Express 17, 15558–15570 (2009). [CrossRef]
  11. T. Cizmar, V. Kollarova, X. Tsampoula, F. Gunn-Moore, W. Sibbett, Z. Bouchal, and K. Dholakia, “Generation of multiple Bessel beams for a biophotonics workstation,” Opt. Express 16, 14024–14035 (2008). [CrossRef]
  12. T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Meth. 8, 417–423 (2011). [CrossRef]
  13. F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photon. 4, 780–785 (2010). [CrossRef]
  14. J. A. Davis, C. S. Tuvey, O. Lopez-Coronado, J. Campos, M. J. Yzuel, and C. Iemmi, “Tailoring the depth of focus for optical imaging systems using a Fourier transform approach,” Opt. Lett. 32, 844–846 (2007). [CrossRef]
  15. J. Mertz, “Optical sectioning microscopy with planar or structured illumination,” Nat. Meth. 8, 811–819 (2011). [CrossRef]
  16. R. Arimoto, C. Saloma, T. Tanaka, and S. Kawata, “Imaging properties of axicon in a scanning optical-system,” Appl. Opt. 31, 6653–6657 (1992). [CrossRef]
  17. S. H. Tao and X. C. Yuan, “Self-reconstruction property of fractional Bessel beams,” J. Opt. Soc. Am. A 21, 1192–1197 (2004). [CrossRef]
  18. J. Arlt, and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177, 297–301 (2000). [CrossRef]
  19. M. Lei, B. L. Yao, and R. A. Rupp, “Structuring by multi-beam interference using symmetric pyramids,” Opt. Express 14, 5803–5811 (2006). [CrossRef]
  20. G. Milne, G. D. M. Jeffries, and D. T. Chiu, “Tunable generation of Bessel beams with a fluidic axicon,” Appl. Phys. Lett. 92, 261101 (2008). [CrossRef]
  21. N. Streibl, “Three-dimensional imaging by a microscope,” J. Opt. Soc. Am. A 2, 121–127 (1985). [CrossRef]
  22. A. Rohrbach, “Artifacts resulting from imaging in scattering media: a theoretical prediction,” Opt. Lett. 34, 3041–3043 (2009). [CrossRef]
  23. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  24. P. Gao, B. Yao, I. Harder, J. Min, R. Guo, J. Zheng, and T. Ye, “Parallel two-step phase-shifting digital holograph microscopy based on a grating pair,” J. Opt. Soc. Am. A 28, 434–440 (2011). [CrossRef]
  25. C. Vecchio and P. Lewin, “Finite amplitude acoustic propagation modeling using the extended angular spectrum method,” J. Opt. Soc. Am. 95, 2399–2408 (1994).
  26. I. L. Katsev, A. S. Prikhach, N. S. Kazak, and M. Kroening, “Peculiarities of propagation of quasi-diffraction-free light beams in strongly scattering absorbing media,” Quantum Electron. 36, 357–362 (2006). [CrossRef]
  27. D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun. 164, 233–245 (1999). [CrossRef]
  28. L. V. Wang and H. I. Wu, Biomedical Optics: Principles and Imaging (Wiley-Interscience, 2007), Chaps. 1, 2, pp. 5–35.
  29. H. Duadi, O. Margalit, Z. Zalevsky, and V. Sarafis, “Optimized extended depth of focus simulated analysis for confocal microscopy,” J. Opt. Soc. Am. A 27, 1378–1384 (2010). [CrossRef]
  30. I. J. Cox, C. J. R. Sheppard, and T. Wilson, “Improvement in resolution by nearly confocal microscopy,” Appl. Opt. 21, 778–781 (1982). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited