OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 30 — Oct. 20, 2012
  • pp: 7276–7285

Characterization of cylindrical terahertz metallic hollow waveguide with multiple dielectric layers

Bang-Shan Sun, Xiao-Li Tang, Xuan Zeng, and Yi-Wei Shi  »View Author Affiliations


Applied Optics, Vol. 51, Issue 30, pp. 7276-7285 (2012)
http://dx.doi.org/10.1364/AO.51.007276


View Full Text Article

Enhanced HTML    Acrobat PDF (1361 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Dielectric-coated metallic hollow waveguides (DMHW) are drawing considerable attention for their application in terahertz (THz) waveguiding. This paper theoretically analyzes the multilayer structure to reduce the transmission and bending loss of DMHW. The efficiency of THz multilayer DMHW depends on a proper selection of dielectric materials and geometrical parameters. The low-loss properties are demonstrated by studying the multilayer gold waveguides with a stack of polypropylene (PP) and Si-doped polypropylene (PPSi). Comparisons are made with single-layer Au/PP and Au-only waveguides. The effect of dielectric absorption is discussed in detail. It is found that low index dielectric causes more additional loss than that of high index dielectric layers. Several design considerations for the THz multilayer DMHW are pointed out by studying the effects of multilayer structure parameters with a stack of polyethylene (PE) and TiO2-doped polyethylene (PETiO2). We conclude that the inner radius of the waveguide and the refractive indices of the dielectrics tend to be larger in order to reduce the influence of material absorption. An optimal value exists for the total number of layers when the dielectrics are absorptive. The absorption tolerances are pointed out to guarantee a smaller loss for multilayer DMHW than that of metal-only waveguide. Finally, a fabrication method for THz multilayer DMHW Ag/PE/PETiO2 is proposed based on co-rolling technique.

© 2012 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2400) Fiber optics and optical communications : Fiber properties
(220.0220) Optical design and fabrication : Optical design and fabrication
(230.4170) Optical devices : Multilayers
(230.7370) Optical devices : Waveguides
(040.2235) Detectors : Far infrared or terahertz

ToC Category:
Optical Devices

History
Original Manuscript: July 16, 2012
Manuscript Accepted: September 11, 2012
Published: October 16, 2012

Citation
Bang-Shan Sun, Xiao-Li Tang, Xuan Zeng, and Yi-Wei Shi, "Characterization of cylindrical terahertz metallic hollow waveguide with multiple dielectric layers," Appl. Opt. 51, 7276-7285 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-30-7276


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. H. Jacobsen, D. M. Mittleman, and M. C. Nuss, “Chemical recognition of gases and gas mixtures with terahertz waves,” Opt. Lett. 21, 2011–2013 (1996). [CrossRef]
  2. D. M. Mittleman, S. Hunsche, and L. Boivin, “T-ray tomography,” Opt. Lett. 22, 904–906 (1997). [CrossRef]
  3. T. Kiwa, M. Tonouchi, and M. Yamashita, “Laser terahertz-emission microscope for inspecting electrical faults in integrated circuits,” Opt. Lett. 28, 2058–2060 (2003). [CrossRef]
  4. K. Kawase, Y. Ogawa, and Y. Watanabe, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11, 2549–2554 (2003). [CrossRef]
  5. M. C. Beard, G. M. Turner, and J. E. Murphy, “Electronic coupling in InP nanoparticle arrays,” Nano Lett. 3, 1695–1699 (2003). [CrossRef]
  6. J. Zhang and D. Grischkowsky, “Waveguide terahertz time-domain spectroscopy of nanometer wave layers,” Opt. Lett. 29, 1617–1619 (2004). [CrossRef]
  7. R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Richie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002). [CrossRef]
  8. K. Wang and M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379 (2004). [CrossRef]
  9. L. J. Chen, H. W. Chen, T. F. Kao, J. Y. Lu, and C. K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett. 31, 308–310 (2006). [CrossRef]
  10. M. Y. Frankel, S. Gupta, and J. A. Valdmanis, “Terahertz attenuation and dispersion characteristics of coplanar transmission-lines,” IEEE Trans. Microw. Theory 39, 910–916(1991). [CrossRef]
  11. S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett. 76, 1987–1989 (2000). [CrossRef]
  12. R. W. McGowan, G. Gallot, and D. Grischkowsky, “Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides,” Opt. Lett. 24, 1431–1433 (1999). [CrossRef]
  13. C. H. Lai, Y. C. Hsueh, H. W. Chen, Y. J. Huang, H. C. Chang, and C. K. Sun, “Low-index terahertz pipe waveguides,” Opt. Express 34, 3457–3459 (2009).
  14. C. H. Lai, B. You, J. Y. Lu, T. A. Liu, J. L. Peng, C. K. Sun, and H. C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18, 309–322 (2010). [CrossRef]
  15. D. Chen and H. B. Chen, “A novel low-loss terahertz waveguide: polymer tube,” Opt. Express 18, 3762–3767 (2010). [CrossRef]
  16. D. Chen, “Mode property of terahertz polymer tube,” J. Lightwave Technol. 28, 2708–2713 (2010). [CrossRef]
  17. J. A. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express 12, 5263–5268 (2004). [CrossRef]
  18. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32, 2945–2947 (2007). [CrossRef]
  19. R. Mendis and D. Grischkowsky, “THz interconnect with low-loss and low-group velocity dispersion,” IEEE Microw. Wirel. Compon. Lett. 11, 444–446 (2001). [CrossRef]
  20. T. Hidaka, H. Minamide, H. Ito, J. Nishizawa, K. Tamura, and S. Ichikawa, “Ferroelectric PVDF cladding terahertz waveguide,” J. Lightwave Technol. 23, 2469–2473 (2005). [CrossRef]
  21. Y. F. Geng, X. L. Tan, P. Wang, and J. Q. Yao, “Transmission loss and dispersion in plastic terahertz photonic band-gap fibers,” Appl. Phys. B 91, 333–336 (2008). [CrossRef]
  22. H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634 (2002). [CrossRef]
  23. G. Ren, Y. Gong, P. Shum, X. Yu, J.-J. Hu, G. Wang, M. O. L. Chuen, and V. Paulose, “Low-loss air-core polarization maintaining terahertz fiber,” Opt. Express 16, 13593–13598 (2008). [CrossRef]
  24. C. S. Ponseca, R. Pobre, E. Estacio, N. Sarukura, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Transmission of terahertz radiation using a microstructured polymer optical fiber,” Opt. Lett. 33, 902–904 (2008). [CrossRef]
  25. J. Y. Lu, C. P. Yu, H. C. Chang, H. W. Chen, Y. T. Li, C. L. Pan, and C. K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008). [CrossRef]
  26. K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17, 8592–8601 (2009). [CrossRef]
  27. A. Shaghik, V. S. Afshar, B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: a novel approach to low loss THz waveguides,” Opt. Express 16, 8845–8854 (2008). [CrossRef]
  28. M. Skorobogatiy and A. Dupuis, “Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance,” Appl. Phys. Lett. 90, 113514 (2007). [CrossRef]
  29. A. Dupuis, K. Stoeffler, B. Ung, C. Dubois, and M. Skorobogatiy, “Transmission measurements of hollow-core THz Bragg fibers,” J. Opt. Soc. Am. B 28, 896–907(2011). [CrossRef]
  30. B. Ung, A. Dupuis, K. Stoeffler, C. Dubois, and M. Skorobogatiy, “High-refractive-index composite materials for terahertz waveguides: trade-off between index contrast and absorption loss,” J. Opt. Soc. Am. B 28, 917–921 (2011). [CrossRef]
  31. J. A. Harrington, “A review of IR transmitting, hollow waveguides,” Fiber Integr. Opt. 19, 211–227 (2000). [CrossRef]
  32. A. Wilk, S. S. Kim, and B. Mizaikoff, “An approach to the spectral simulation of infrared hollow waveguide gas sensors,” Anal. Bioanal. Chem. 395, 1661–1671 (2009). [CrossRef]
  33. Y. Komachi, H. Sato, Y. Matsuura, M. Miyagi, and H. Tashiro, “Raman probe using a single hollow waveguide,” Opt. Lett. 30, 2942–2944 (2005). [CrossRef]
  34. S. Kino and Y. Matsuura, “Nontoxic and chemically stable hollow optical fiber probe for fourier transform infrared spectroscopy,” Appl. Spectrosc. 61, 1334–1337 (2007). [CrossRef]
  35. T. Ito, Y. Matsuura, M. Miyagi, H. Minamide, and H. Ito, “Flexible terahertz fiber optics with low bend-induced losses,” J. Opt. Soc. Am. B 24, 1230–1235 (2007). [CrossRef]
  36. Y. Matsuura and E. Takeda, “Hollow optical fibers loaded with an inner dielectric film for terahertz broadband spectroscopy,” J. Opt. Soc. Am. B 25, 1949–1954 (2008). [CrossRef]
  37. C. Themistos, B. M. A. Rahman, M. Rajarajan, K. T. V. Grattan, B. Bowden, and J. A. Harrington, “Characterization of silver/polystyrene (PS)-coated hollow glass waveguides at THz frequency,” J. Lightwave Technol. 25, 2456–2462(2007). [CrossRef]
  38. O. Mitrofanov and J. A. Harrington, “Dielectric-lined cylindrical metallic THz waveguides: mode structure and dispersion,” Opt. Express 18, 1898–1903 (2010). [CrossRef]
  39. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93, 181104 (2008). [CrossRef]
  40. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Fabrication of terahertz hollow-glass metallic waveguides with inner dielectric coatings,” J. Appl. Phys. 104, 093110 (2008). [CrossRef]
  41. X. L. Tang, Y. W. Shi, Y. Matsuura, K. Iwai, and M. Miyagi, “Transmission characteristics of terahertz hollow fiber with an absorptive dielectric inner-coating film,” Opt. Lett. 34, 2231–2233 (2009). [CrossRef]
  42. X. L. Tang, B. S. Sun, and Y. W. Shi, “Design and optimization of low-loss high-birefringence hollow fiber at terahertz frequency,” Opt. Express 19, 24967–24979 (2011). [CrossRef]
  43. X. L. Tang and Y. W. Shi, “Characterization of dielectric-coated metallic hollow fiber with subwavelength diameter at terahertz frequency,” Opt. Eng. 51, 025001 (2012). [CrossRef]
  44. X. Lin, Y. W. Shi, K. R. Sui, X. S. Zhu, K. Iwai, and M. Miyagi, “Fabrication and characterization of infrared hollow fiber with multi-SiO2 and AgI inner-coating layers,” Appl. Opt. 48, 6765–6769 (2009). [CrossRef]
  45. B. S. Sun, X. Zeng, K. Iwai, M. Miyagi, N. Chi, and Y. W. Shi, “Experimental investigation on liquid-phase fabrication techniques for multilayer infrared hollow fiber,” Opt. Fiber Technol. 17, 281–285 (2011). [CrossRef]
  46. B. S. Sun, X. L. Tang, Y. W. Shi, K. Iwai, and M. Miyagi, “Optimal design for hollow fiber inner-coated by dielectric layers with surface roughness,” Opt. Lett. 36, 3461–3463 (2011). [CrossRef]
  47. Y. Matsuura and J. A. Harrington, “Hollow glass waveguides with three-layer dielectric coating fabricated by chemical vapor deposition,” J. Opt. Soc. Am. A. 14, 1255–1259 (1997). [CrossRef]
  48. T. Karagiri, Y. Matsuura, and M. Miyagi, “Metal-covered photonic bandgap multilayer for infrared hollow waveguide,” Appl. Opt. 41, 7603–7606 (2002). [CrossRef]
  49. V. Gopal and J. A. Harrington, “Deposition and characterization of metal sulfide dielectric coatings for hollow glass waveguides,” Opt. Express 11, 3182–3187 (2003). [CrossRef]
  50. M. Ben-David, M. Catalogna, J. A. Harrington, V. Krishnan, and I. Gannot, “Theoretical and experimental investigations of metal sulfide dielectric coatings for hollow waveguides,” Opt. Eng. 47, 045008 (2008). [CrossRef]
  51. M. Nakazawa, Y. W. Shi, Y. Matsuura, K. Iwai, and M. Miyagi, “Hollow polycarbonate fiber for Er:YAG laser light delivery,” Opt. Lett. 31, 1373–1376 (2006). [CrossRef]
  52. M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. 2, 116–126 (1984). [CrossRef]
  53. Y. Matsuura, M. Saito, and M. Miyagi, “Loss characteristics uof circular hollow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A 6, 423–427 (1989). [CrossRef]
  54. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099–1119 (1983). [CrossRef]
  55. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of Au, Ni, and Pb at submillimeter wavelengths,” Appl. Opt. 26, 744–752 (1987). [CrossRef]
  56. M. A. Ordal, R. J. Bell, R. W. Alexander, L. A. Newquist, and M. R. Querry, “Optical properties of Al, Fe, Ti, Ta, W, and Mo at submillimeter wavelengths,” Appl. Opt. 27, 1203–1209 (1988). [CrossRef]
  57. S. Wietzkea, C. Jansena, F. Rutza, D. M. Mittlemanb, and M. Kocha, “Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy,” Polym. Test. 26, 614–618 (2007). [CrossRef]
  58. M. Scheller, S. Wietzke, C. Jansen, and M. Koch, “Modelling heterogeneous dielectric mixtures in the terahertz regime: a quasistatic effective medium theory,” J. Phys. D 42, 065415 (2009). [CrossRef]
  59. M. Miyagi and S. Kawakami, “Losses and phase constant changes caused by bends in the general class of hollow waveguides for the infrared,” Appl. Opt. 20, 4221–4226 (1981). [CrossRef]
  60. J. R. Birch, “The far-infrared optical constants of polypropylene, PTFE and polystyrene,” Infrared Phys. 33, 33–38 (1992). [CrossRef]
  61. J. R. Birch, “The far-infrared optical constants of polyethylene,” Infrared Phys. 30, 195–197 (1990). [CrossRef]
  62. E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1998).
  63. K. Stoeffler, C. Dubois, A. Ajji, N. Guo, F. Boismenu, and M. Skorobogatiy, “Fabrication of all-polymeric photonic bandgap Bragg fibers using rolling of coextruded PS/PMMA multilayer films,” Polym. Eng. Sci. 50, 1122–1127 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited