OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 30 — Oct. 20, 2012
  • pp: 7319–7332

Modern design tools and a new paradigm in optical coating design

Alexander V. Tikhonravov and Michael K. Trubetskov  »View Author Affiliations


Applied Optics, Vol. 51, Issue 30, pp. 7319-7332 (2012)
http://dx.doi.org/10.1364/AO.51.007319


View Full Text Article

Enhanced HTML    Acrobat PDF (721 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Several modern optical coating designs tools are discussed in the frame of a new design paradigm proposing the search not for a formally optimal solution with the lowest possible merit function value but for the most practical solution that takes into account additional feasibility demands. Considered design tools include a stochastic optimization procedure that takes into account upper and lower constraints for layer optical thicknesses. This procedure allows one to obtain multiple solutions to a design problem, which presents additional opportunities for choosing a practically optimal design. Two special design techniques involving integer optimization also take into account additional demands. The first one is aimed at designing multicavity narrow bandpass filters with quarter wave or multiple quarter wave layer optical thicknesses. It enables obtaining bandpass filters with extremely steep transmittance slopes, bandwidths of several tens of nanometers, and very small ripples in transmission zones. The second technique is aimed at covering design problems that have been traditionally solved using the theory of equivalent layers. One more technique considered in this paper is aimed at reducing the influence of noncorrelated thickness errors on design spectral characteristics.

© 2012 Optical Society of America

OCIS Codes
(310.4165) Thin films : Multilayer design
(310.5696) Thin films : Refinement and synthesis methods
(310.6805) Thin films : Theory and design

ToC Category:
Thin Films

History
Original Manuscript: August 7, 2012
Revised Manuscript: September 11, 2012
Manuscript Accepted: September 12, 2012
Published: October 17, 2012

Citation
Alexander V. Tikhonravov and Michael K. Trubetskov, "Modern design tools and a new paradigm in optical coating design," Appl. Opt. 51, 7319-7332 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-30-7319


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. A. Macleod, Thin Film Optical Filters, 4th ed. (CRC Press, 2010).
  2. A. Thelen, Design of Optical Interference Coatings (McGraw-Hill, 1988).
  3. S. Furman and A. V. Tikhonravov, Basics of Optics of Multilayer Systems (Edition Frontieres, 1992).
  4. J. A. Dobrowolski, Optical Properties of Films and Coatings (McGraw-Hill, 1994), pp. 42.3–42.130.
  5. N. Kaiser and H. K. Pulker, Optical Interference Coatings (Springer-Verlag, 2003).
  6. P. W. Baumeister, Optical Coating Technology (SPIE, 2004).
  7. J. A. Dobrowolski, “Numerical methods for optical thin films,” Opt. Photon. News 8(6), 24–33 (1997). [CrossRef]
  8. J. A. Dobrowolski, and D. Lowe, “Optical thin film synthesis program based on the use of Fourier transforms,” Appl. Opt. 17, 3039–3050 (1978). [CrossRef]
  9. P. G. Verly, J. A. Dobrowolski, W. Wild, and R. Burton, “Synthesis of high rejection filters with the Fourier transform method,” Appl. Opt. 28, 2864–2875 (1989). [CrossRef]
  10. P. G. Verly, and J. A. Dobrowolski, “Iterative correction process for optical thin film synthesis with the Fourier transform method,” Appl. Opt. 29, 3672–3684 (1990). [CrossRef]
  11. P. G. Verly, J. A. Dobrowolski, and R. R. Willey, “Fourier-transform method for the design of wideband antireflection coatings,” Appl. Opt. 31, 3836–3846 (1992). [CrossRef]
  12. P. G. Verly, “Fourier-transform technique with frequency filtering for optical thin film design,” Appl. Opt. 34, 688–694 (1995). [CrossRef]
  13. B. G. Bovard, “Rugate filter design: the modified Fourier transform technique,” Appl. Opt. 29, 24–30 (1990). [CrossRef]
  14. H. Fabricius, “Gradient-index filter: designing filters with step skirts, high reflection and quintic matching layers,” Appl. Opt. 31, 5191–5196 (1992). [CrossRef]
  15. X. Cheng, B. Fan, J. A. Dobrowolski, L. Wang, and Z. Wang, “Gradient-index optical filter synthesis with controllable and predictable refractive index profiles,” Opt. Express 16, 2315–2321 (2008). [CrossRef]
  16. J. A. Dobrowolski, and R. A. Kemp, “Refinement of optical multilayer systems with different optimization procedures,” Appl. Opt. 29, 2876–2893 (1990). [CrossRef]
  17. L. Li, and J. A. Dobrowolski, “Computation speeds of different optical thin-film synthesis methods,” Appl. Opt. 31, 3790–3799 (1992). [CrossRef]
  18. J. Kruschwitz, “Software tools speed optical thin-film design,” Laser Focus World 39, 157–166 (2003).
  19. A. V. Tikhonravov, “Synthesis of optical coatings using optimality conditions,” in Vestnik MGU, Vol. 23 of Physics and Astronomy Series (1982), pp. 91–93.
  20. A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, “Application of the needle optimization technique to the design of optical coatings,” Appl. Opt. 35, 5493–5508 (1996). [CrossRef]
  21. A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, “Optical coating design approaches based on the needle optimization technique,” Appl. Opt. 46, 704–710 (2007). [CrossRef]
  22. J. A. Dobrowolski, “Completely automatic synthesis of optical thin film systems,” Appl. Opt. 4, 937–946 (1965). [CrossRef]
  23. A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, and M. A. Kokarev, “Key role of the coating total optical thickness in solving design problems,” Proc. SPIE 5250, 312–321 (2004). [CrossRef]
  24. A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, and J. A. Dobrowolski, “Estimation of the average residual reflectance of broadband antireflection coatings,” Appl. Opt. 47, C124–C130 (2008). [CrossRef]
  25. A. Tikhonravov, M. Trubetskov, and I. Kasahara, “Achievements and challenges in the design and production of high quality optical coatings,” IEICE Trans Electron E91-C, 1622–1629 (2008). [CrossRef]
  26. U. Schulz, U. B. Schallenberg, and N. Kaiser, “Antireflection coating design for plastic optics,” Appl. Opt. 41, 3107–3110 (2002). [CrossRef]
  27. U. Schulz, U. B. Schallenberg, and N. Kaiser, “Symmetrical periods in antireflective coatings for plastic optics,” Appl. Opt. 42, 1346–1351 (2003). [CrossRef]
  28. U. Schulz, K. Lau, and N. Kaiser, “Antireflection coating with UV-protective properties for polycarbonate,” Appl. Opt. 47, C83–C87 (2008). [CrossRef]
  29. S. Wilbrandt, O. Stenzel, and N. Kaiser, “All-oxide broadband antireflection coatings by plasma ion assisted deposition: design, simulation, manufacturing and re-optimization,” Opt. Express 18, 19732–19742 (2010). [CrossRef]
  30. A. V. Tikhonravov, “Some theoretical aspects of thin film optics and their applications,” Appl. Opt. 32, 5417–5426 (1993). [CrossRef]
  31. A. V. Tikhonravov, and M. K. Trubetskov, “Computational manufacturing as a bridge between design and production,” Appl. Opt. 44, 6877–6884 (2005). [CrossRef]
  32. B. Badoil, F. Lemarchand, M. Cathelinaud, and M. Lequime, “Interest of broadband optical monitoring for thin-film filter manufacturing,” Appl. Opt. 46, 4294–4303 (2007). [CrossRef]
  33. D. Ristau, H. Ehlers, S. Schlichting, and M. Lappschies, “State of art in deterministic production of optical thin films,” Proc. SPIE 7101, 71010C (2008). [CrossRef]
  34. K. Friedrich, S. Wilbrandt, O. Stenzel, N. Kaiser, and K. H. Hoffmann, “Computational manufacturing of optical interference coatings: method, simulation results, and comparison with experiment,” Appl. Opt. 49, 3150–3162 (2010). [CrossRef]
  35. A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, and V. Pervak, “Estimations of production yields for choosing of a practically optimal optical coating design,” Appl. Opt. 50, C141–C147 (2011). [CrossRef]
  36. A. Zoeller, M. Boos, R. Goetzelmann, H. Hagedorn, and W. Klug, “Substantial progress in optical monitoring by intermittent measurement technique,” Proc. SPIE 5963, 105–113 (2005). [CrossRef]
  37. C.-C. Lee, K. Wu, C.-C. Kuo, and S.-H. Chen, “Improvement of the optical coating process by cutting layers with sensitive monitoring wavelengths,” Opt. Express 13, 4854–4861(2005). [CrossRef]
  38. B. Chun, C. K. Hwangbo, and J. S. Kim, “Optical monitoring of nonquarterwave layers of dielectric multilayer filters using optical admittance,” Opt. Express 14, 2473–2480 (2006). [CrossRef]
  39. A. V. Tikhonravov and M. K. Trubetskov, “Elimination of cumulative effect of thickness errors in monochromatic monitoring of optical coating production: theory,” Appl. Opt. 46, 2084–2090 (2007). [CrossRef]
  40. A. N. Tikhonov, A. V. Tikhonravov, and M. K. Trubetskov, “Second order optimization methods in the synthesis of multilayer coatings,” Comp. Maths. Math. Phys. 33, 1339–1352 (1993). [CrossRef]
  41. J. Nocedal, and S. J. Wright, Numerical Optimization (Springer Verlag, 2006).
  42. A. V. Tikhonravov and M. K. Trubetskov, “Automated design and sensitivity analysis of wavelength-division multiplexing filters,” Appl. Opt. 41, 3176–3182 (2002). [CrossRef]
  43. A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Investigation of the effect of accumulation of thickness errors in optical coating production using broadband optical monitoring,” Appl. Opt. 45, 7026–7034 (2006). [CrossRef]
  44. A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Investigation of the error self-compensation effect associated with broadband optical monitoring,” Appl. Opt. 50, C111–C116 (2011). [CrossRef]
  45. H. A. Macleod, “Turning value monitoring of narrow-band all-dielectric thin film optical filters,” Opt. Acta 19, 1–28 (1972). [CrossRef]
  46. A. V. Tikhonravov, M. K. Trubetskov, I. V. Kozlov, V. G. Zhupanov, and E. V. Klyuev, “Design and production of bandpass filters with steep transmittance slopes,” in Optical Interference Coatings Topical Meeting (Optical Society of America, 2010), paper MA6.
  47. A. V. Tikhonravov, P. W. Baumeister, and K. V. Popov, “Phase properties of multilayers,” Appl. Opt. 36, 4382–4392 (1997). [CrossRef]
  48. W. H. Southwell, W. J. Gunning, and R. L. Hall, “Narrow-bandpass filter using partitioned cavities,” Proc. SPIE 678, 177–184 (1986).
  49. P. W. Baumeister, “Design of a wavelength-division multiplexing bandpass with quasi-chebyshev spectral shape,” Appl. Opt. 40, 1132–1137 (2001). [CrossRef]
  50. P. Baumeister, “Design of a coarse WDM bandpass filter using the Thelen bandpass design method,” Opt. Express 9, 652–657 (2001). [CrossRef]
  51. P. Baumeister, “Application of microwave technology to design an optical multilayer bandpass filter,” Appl. Opt. 42, 2407–2414 (2003). [CrossRef]
  52. W. H. Southwell and R. L. Hall, “Rugate filter sidelobe suppression using quintic and rugated quintic matching layers,” Appl. Opt. 28, 2949–2951 (1989). [CrossRef]
  53. W. H. Southwell, “Using apodization functions to reduce sidelobes in rugate filters,” Appl. Opt. 28, 5091–5094 (1989). [CrossRef]
  54. B. G. Bovard, “Rugate filter theory: an overview,” Appl. Opt. 32, 5427–5442 (1993). [CrossRef]
  55. W. H. Southwell, “Coating design using very thin high- and low-index layers,” Appl. Opt. 24, 457–460 (1985). [CrossRef]
  56. V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, J. Pistner, F. Krausz, and A. Apolonski, “Band filters: 2-material technology versus rugate,” Appl. Opt. 46, 1190–1193 (2007). [CrossRef]
  57. A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Application of constrained optimization to the design of quasi-rugate optical coatings,” Appl. Opt. 47, 5103–5109 (2008). [CrossRef]
  58. A. Thelen, “Design of a hot mirror: contest results,” Appl. Opt. 35, 4966–4977 (1996). [CrossRef]
  59. V. Yakovlev and G. Tempea, “Optimization of chirped mirrors,” Appl. Opt. 41, 6514–6520 (2002). [CrossRef]
  60. O. Nohadani, J. R. Birge, F. X. Kärtner, and D. J. Bertsimas, “Robust chirped mirrors,” Appl. Opt. 47, 2630–2636 (2008). [CrossRef]
  61. J. R. Birge, F. X. Kärtner, and O. Nohadani, “Improving thin-film manufacturing yield with robust optimization,” Appl. Opt. 50, C36–C40 (2011). [CrossRef]
  62. M. K. Trubetskov and A. V. Tikhonravov, “Robust synthesis of multilayer coatings,” in Optical Interference Coatings Topical Meeting (Optical Society of America, 2010), paper TuA4.
  63. V. Pervak, M. K. Trubetskov, and A. V. Tikhonravov, “Robust synthesis of dispersive mirrors,” Opt. Express 19, 2371–2380 (2011). [CrossRef]
  64. V. Pervak, O. Pronin, O. Razskazovskaya, J. Brons, I. B. Angelov, M. K. Trubetskov, A. V. Tikhonravov, and F. Krausz, “High-dispersive mirrors for high power applications,” Opt. Express 20, 4503–4508 (2012). [CrossRef]
  65. J. A. Dobrowolski, A. V. Tikhonravov, M. K. Trubetskov, B. T. Sullivan, and P. G. Verly, “Optimal single-band normal incidence antireflection coatings,” Appl. Opt. 35, 644–658 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited