OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 30 — Oct. 20, 2012
  • pp: 7333–7338

Dynamics of photoinduced refractive index changes in As2S3 fibers

Irina V. Kabakova, Liner E. Zou, George A. Brawley, Catalin Florea, Ishwar D. Aggarwal, Jasbinder S. Sanghera, Eric C. Mägi, Enbang Li, and Benjamin J. Eggleton  »View Author Affiliations


Applied Optics, Vol. 51, Issue 30, pp. 7333-7338 (2012)
http://dx.doi.org/10.1364/AO.51.007333


View Full Text Article

Enhanced HTML    Acrobat PDF (503 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the dynamics of photoinduced index changes in chalcogenide As 2 S 3 fibers. Using a novel phase sensitive technique for measuring the photoinduced index change, we find that the index evolution is a two-stage process: it consists of a fast reduction and a subsequent slow increase in the refractive index. We show that the index change depends strongly on the beam intensity with both positive and negative changes possible. These findings can have application in design and fabrication of photoinduced devices such as Bragg gratings and photonic cavities.

© 2012 Optical Society of America

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(060.3738) Fiber optics and optical communications : Fiber Bragg gratings, photosensitivity
(160.5335) Materials : Photosensitive materials

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: July 11, 2012
Manuscript Accepted: September 13, 2012
Published: October 17, 2012

Citation
Irina V. Kabakova, Liner Zou, George A. Brawley, Catalin Florea, Ishwar D. Aggarwal, Jasbinder S. Sanghera, Eric C. Mägi, Enbang Li, and Benjamin J. Eggleton, "Dynamics of photoinduced refractive index changes in As2S3 fibers," Appl. Opt. 51, 7333-7338 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-30-7333


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
  2. J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15, 114–119 (2009). [CrossRef]
  3. M. D. Pelusi, F. Luan, E. Magi, M. Lamont, D. J. Moss, B. J. Eggleton, J. S. Sanghera, and I. D. Aggarwal, “High bit rate all-optical signal processing in a fiber photonic wire,” Opt. Express 16, 11506 (2008). [CrossRef]
  4. F. Luan, E. Magi, T. Gong, I. Kabakova, and B. J. Eggleton, “Photoinduced whispering gallery mode microcavity resonator in a chalcogenide microfiber,” Opt. Lett. 36, 4761–4763 (2011). [CrossRef]
  5. M. Asobe, T. Ohara, I. Yokohama, and T. Kaino, “Fabrication of Bragg grating in chalcogenide glass fiber using the transverse holographic method,” Electron. Lett. 32, 1611–1613 (1996). [CrossRef]
  6. C. Florea, J. S. Sanghera, B. Shaw, and I. D. Aggarwal, “Fiber Bragg gratings in As2S3 fibers obtained using a 0/−1 phase mask,” Opt. Mater. 31, 942–944 (2009). [CrossRef]
  7. R. Ahmad, C. Baker, and M. Rochette, “Fabrication of Bragg gratings in subwavelength diameter As2Se3 chalcogenide wires,” Opt. Lett. 36, 2886–2888 (2011). [CrossRef]
  8. D. D. Hudson, S. A. Dekker, E. C. Magi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As2S3 taper using ultralow pump pulse energy,” Opt. Lett. 36, 1122–1124 (2011). [CrossRef]
  9. M. A. Popescu, Non-Crystalline Chalcogenides (Kluwer, 2000).
  10. A. Zakery and S. R. Elliot, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330, 1–12 (2003). [CrossRef]
  11. M. Popescu, and W. Hoyer, “Structural features and mechanism of reversible photoinduced transformations in amorphous chalcogenides,” J. Optoelectron. Adv. Mater. 4, 867–874 (2002).
  12. M. Shokooh-Saremi, V. G. Ta’eed, N. J. Baker, I. C. M. Littler, D. J. Moss, and B. J. Eggleton, “High-performance Bragg gratings in chalcogenide rib waveguides written with a modified Sagnac interferometer,” J. Opt. Soc. Am. B 23, 1323–1331 (2006). [CrossRef]
  13. G. A. Brawley, V. G. Ta’eed, J. A. Bolger, J. S. Sanghera, I. Aggarwal, and B. J. Eggleton, “Strong photoinduced Bragg gratings in arsenic selenide optical fibre using transverse holographic method,” Electron. Lett. 44, 846–847 (2008). [CrossRef]
  14. M. W. Lee, C. Grillet, C. L. C. Smith, D. J. Moss, B. J. Eggleton, D. Freeman, B. Luther-Davies, S. Madden, A. Rode, Y. Ruan, and Y.-H. Lee, “Photosensitive post tuning of chalcogenide photonic crystal waveguides,” Opt. Express 15, 1277–1285 (2007). [CrossRef]
  15. V. K. Tikhomirov, M. Barj, S. Turrel, J. Kobelke, N. Idrissi, M. Bouzaoui, B. Capoen, and A. B. Seddon, “Non-linear Raman effects and photodarkening in chalcogenide glass As2S3,” Europhys. Lett. 76, 312–317 (2006). [CrossRef]
  16. K. Tanaka, “Photoexpansion in As2S3 glass,” Phys. Rev. B 57, 5163–5167 (1998). [CrossRef]
  17. P. Khan, A. R. Barik, E. M. Vinod, K. S. Sangunni, H. Jain, and K. V. Adarsh, “Coexistence of fast photodarkening and slow photobleaching in Ge19As21Se60 thin films,” Opt. Express 20, 12416–12421 (2012). [CrossRef]
  18. Y. Aoyagi, Y. Sefawa, S. Namba, T. Suhara, N. Nishihara, and H. Gamo, “Dynamic behavior of the photodarkening process in As2S3 chalcogenide glass,” Phys. Status Solidi A 67, 669–676 (1981). [CrossRef]
  19. C. Florea, L. Busse, J. Sanghera, B. Shaw, and I. Aggarwal, “A simple phenomenological study of photodarkening in As2S3 glasses,” Opt. Mater. 34, 1389–1393 (2012). [CrossRef]
  20. A. Saliminia, A. Villeneuve, T. V. Galstyan, S. LaRochelle, and K. Richardson, “First- and second-order Bragg gratings in single-mode planar waveguides of chalcogenide glasses,” J. Lightwave Technol. 17, 837–842 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited