OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 30 — Oct. 20, 2012
  • pp: 7345–7356

Polarimetric imaging beyond the speckle grain scale

Lucien Pouget, Julien Fade, Cyril Hamel, and Mehdi Alouini  »View Author Affiliations


Applied Optics, Vol. 51, Issue 30, pp. 7345-7356 (2012)
http://dx.doi.org/10.1364/AO.51.007345


View Full Text Article

Enhanced HTML    Acrobat PDF (1757 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We address an experimental Stokes imaging setup allowing one to explore the polarimetric properties of a speckle light field with spatial resolution well beyond the speckle grain scale. We detail how the various experimental difficulties inherent to such measurements can be overcome with a dedicated measurement protocol involving a careful speckle registration step. The setup and protocol are then validated on a metallic reference sample, and used to measure the state of polarization (SOP) of light in each pixel of highly resolved speckle patterns (>2000 pixels per speckle grain) resulting from the scattering of an incident coherent beam on samples exhibiting different polarimetric properties. Evolution of the SOP with spatial averaging and across adjacent speckle grains is eventually addressed.

© 2012 Optical Society of America

OCIS Codes
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(110.6150) Imaging systems : Speckle imaging
(220.4830) Optical design and fabrication : Systems design
(260.5430) Physical optics : Polarization
(110.5405) Imaging systems : Polarimetric imaging

ToC Category:
Imaging Systems

History
Original Manuscript: June 12, 2012
Revised Manuscript: September 14, 2012
Manuscript Accepted: September 14, 2012
Published: October 18, 2012

Citation
Lucien Pouget, Julien Fade, Cyril Hamel, and Mehdi Alouini, "Polarimetric imaging beyond the speckle grain scale," Appl. Opt. 51, 7345-7356 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-30-7345


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. W. Goodman, Speckle Phenomena: Theory and Applications (Roberts & Company, 2007).
  2. M. I. Skolnik, Introduction to Radar Systems, 3rd ed. (McGraw-Hill, 2001).
  3. J. K. Jao, “Amplitude distribution of composite terrain radar clutter and the K-distribution,” IEEE Trans. Antennas Propag. AP-32, 1049–1062 (1984). [CrossRef]
  4. N. Garcia and A. Z. Genack, “Crossover to strong intensity correlation for microwave radiation in random media,” Phys. Rev. Lett. 63, 1678–1681 (1989). [CrossRef]
  5. P. Sheng, Introduction to Wave Scattering, Localization and Mesoscopic Phenomena, 2nd ed. (Springer, 2006).
  6. I. Freund, “Time-reversal symmetry and image reconstruction through multiple-scattering media,” J. Opt. Soc. Am. A 9, 456–463 (1992). [CrossRef]
  7. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010). [CrossRef]
  8. W. H. Peeters, J. J. D. Moerman, and M. P. van Exter, “Observation of two-photon speckle patterns,” Phys. Rev. Lett. 104, 173601 (2010). [CrossRef]
  9. O. V. Angelsky, I. I. Mokhun, A. I. Mokhun, and M. S. Soskin, “Interferometric methods in diagnostics of polarization singularities,” Phys. Rev. E 65, 036602 (2002). [CrossRef]
  10. M. Alouini, F. Goudail, A. Grisard, J. Bourderionnet, D. Dolfi, A. Béniére, I. Baarstad, T. Løke, P. Kaspersen, X. Normandin, and G. Berginc, “Near-infrared active polarimetric and multispectral laboratory demonstrator for target detection,” Appl. Opt. 48, 1610–1618 (2009). [CrossRef]
  11. A. Béniére, M. Alouini, F. Goudail, and D. Dolfi, “Design and experimental validation of a snapshot polarization contrast imager,” Appl. Opt. 48, 5764–5773 (2009). [CrossRef]
  12. D. Léger, E. Mathieu, and J. C. Perrin, “Optical surface roughness determination using speckle correlation technique,” Appl. Opt. 14, 872–877 (1975). [CrossRef]
  13. M. Lehman, J. A. Pomarico, and R. D. Torroba, “Digital speckle pattern interferometry applied to a surface roughness study,” Opt. Eng. 34, 1148–1152 (1995). [CrossRef]
  14. R. A. Sprague, “Surface roughness measurement using white light speckle,” Appl. Opt. 11, 2811–2817 (1972). [CrossRef]
  15. N. Andrés, M. P. Arroyo, H. Hinrichs, and M. Quintanilla, “Digital speckle-pattern interferometry as a full-field fluid-velocimetry technique,” Opt. Lett. 24, 575–577 (1999). [CrossRef]
  16. I. Freund, “Stokes-vector reconstruction,” Opt. Lett. 15, 1425–1427 (1990). [CrossRef]
  17. M. Roche, J. Fade, and P. Réfrégier, “Parametric estimation of the square degree of polarization from two intensity images degraded by fully developed speckle noise,” J. Opt. Soc. Am. A 24, 2719–2727 (2007). [CrossRef]
  18. P. Réfrégier, J. Fade, and M. Roche, “Estimation precision of the degree of polarization from a single speckle intensity image,” Opt. Lett. 32, 739–741 (2007). [CrossRef]
  19. J. Fade, M. Roche, and M. Alouini, “Computational polarization imaging from a single speckle image,” Opt. Lett. 37, 386–388 (2012). [CrossRef]
  20. J. Sorrentini, M. Zerrad, G. Soriano, and C. Amra, “Enpolarization of light by scattering media,” Opt. Express 19, 21313–21320 (2011). [CrossRef]
  21. N. Curry, P. Bondareff, M. Leclercq, N. F. van Hulst, R. Sapienza, S. Gigan, and S. Grésillon, “Direct determination of diffusion properties of random media from speckle contrast,” Opt. Lett. 36, 3332–3334 (2011). [CrossRef]
  22. T. Setälä, A. Shevchenko, M. Kaivola, and A. T. Friberg, “Polarization time and length for random optical beams,” Phys. Rev. A 78, 033817 (2008). [CrossRef]
  23. J. Broky and A. Dogariu, “Complex degree of mutual polarization in randomly scattered fields,” Opt. Express 18, 20105–20113 (2010). [CrossRef]
  24. J. Broky and A. Dogariu, “Correlations of polarization in random electro-magnetic fields,” Opt. Express 19, 15711–15719 (2011). [CrossRef]
  25. J. Li, G. Yao, and L. V. Wang, “Degree of polarization in laser speckles from turbid media: implication in tissue optics,” J. Biomed. Opt. 7, 307–312 (2002). [CrossRef]
  26. C. Amra, M. Zerrad, L. Siozade, G. Georges, and C. Deumié, “Partial polarization of light induced by random defects at surfaces or bulks,” Opt. Express 16, 10372–10383 (2008). [CrossRef]
  27. M. Zerrad, J. Sorrentini, G. Soriano, and C. Amra, “Gradual loss of polarization in light scattered from rough surfaces: electromagnetic prediction,” Opt. Express 18, 15832–15843 (2010). [CrossRef]
  28. J. Ellis and A. Dogariu, “Complex degree of mutual polarization,” Opt. Lett. 29, 536–538 (2004). [CrossRef]
  29. O. Korotkova and E. Wolf, “Generalized Stokes parameters of random electromagnetic beams,” Opt. Lett. 30, 198–200 (2005). [CrossRef]
  30. J. Tervo, T. Setälä, A. Roueff, P. Réfrégier, and A. T. Friberg, “Two-point stokes parameters: interpretation and properties,” Opt. Lett. 34, 3074–3076 (2009). [CrossRef]
  31. E. Collett, Polarized Light: Fundamentals and Applications (Dekker, 1993).
  32. S. Breugnot and P. Clémenceau, “Modeling and performances of a polarization active imager at λ=806  nm,” Opt. Eng. 39, 2681–2688 (2000). [CrossRef]
  33. S. Zhang, Y. D. Lockerman, J. Park, and A. Z. Genack, “Interplay between generic and mesoscopic speckle statistics in transmission through random media,” J. Opt. A 11, 094018 (2009). [CrossRef]
  34. E. Compain, S. Poirier, and B. Drevillon, “General and self-consistent method for the calibration of polarization modulators, polarimeters, and Mueller-matrix ellipsometers,” Appl. Opt. 38, 3490–3502 (1999). [CrossRef]
  35. M. Alouini, F. Goudail, N. Roux, L. Le Hors, P. Hartemann, S. Breugnot, and D. Dolfi, “Active spectro-polarimetric imaging: signature modeling, imaging demonstrator and target detection,” Eur. Phys. J. Appl. Phys. 42, 129–139 (2008). [CrossRef]
  36. M. S. Soskin, V. Denisenko, and I. Freund, “Optical polarization singularities and elliptic stationary points,” Opt. Lett. 28, 1475–1477 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited