OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 30 — Oct. 20, 2012
  • pp: 7368–7373

Tapered-fiber-based refractive index sensor at an air/solution interface

Ping Lu, Jeremie Harris, Xiaozhen Wang, Ganbin Lin, Liang Chen, and Xiaoyi Bao  »View Author Affiliations

Applied Optics, Vol. 51, Issue 30, pp. 7368-7373 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (810 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An approach to achieve refractive index sensing at an air and aqueous glycerol solution interface is proposed using a tapered-fiber-based microfiber Mach–Zehnder interferometer (MFMZI). Compared to a surrounding uniform medium of air or solutions, the spectral interference visibility of the MFMZI at the air/solution interface is significantly reduced due to a weak coupling between the fundamental cladding mode and high-order asymmetric cladding modes, which are extremely sensitive to the external refractive index. The MFMZI is experimentally demonstrated as an evanescent wave refractive index sensor to measure concentrations of glycerol solutions by monitoring average power attenuation of the tapered fiber.

© 2012 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: August 15, 2012
Revised Manuscript: September 17, 2012
Manuscript Accepted: September 21, 2012
Published: October 18, 2012

Ping Lu, Jeremie Harris, Xiaozhen Wang, Ganbin Lin, Liang Chen, and Xiaoyi Bao, "Tapered-fiber-based refractive index sensor at an air/solution interface," Appl. Opt. 51, 7368-7373 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 2005).
  2. M. G. Kuzyk, Polymer Fiber Optics: Materials, Physics, and Applications (CRC Press, 2006).
  3. J. Homola, ed., Surface Plasmon Resonance Based Sensors (Springer, 2006).
  4. Ó. Esteban, M. Cruz-Navarrete, A. González-Cano, and E. Bernabeu, “Measurement of the degree of salinity of water with a fiber-optic sensor,” Appl. Opt. 38, 5267–5271 (1999). [CrossRef]
  5. Y.-C. Kim, W. Peng, S. Banerji, and K. S. Booksh, “Tapered fiber optic surface plasmon resonance sensor for analyses of vapor and liquid phases,” Opt. Lett. 30, 2218–2220 (2005). [CrossRef]
  6. K. Mitsui, Y. Handa, and K. Kajikawa, “Optical fiber affinity biosensor based on localized surface plasmon resonance,” Appl. Phys. Lett. 85, 4231–4233 (2004). [CrossRef]
  7. A. Asseh, S. Sandgre, H. Aslfeldt, B. Sahlgren, R. Stubbed, and G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17, 51–62 (1998). [CrossRef]
  8. R. Jha, J. Villatoro, and G. Badenes, “Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing,” Appl. Phys. Lett. 93, 191106 (2008). [CrossRef]
  9. F. Xu and G. Brambilla, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett. 92, 101126 (2008). [CrossRef]
  10. P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131110 (2009). [CrossRef]
  11. J. M. Corres, F. J. Arregui, and I. R. Matias, “Design of humidity sensors based on tapered optical fibers,” J. Lightwave Technol. 24, 4329–4336 (2006). [CrossRef]
  12. Y.-J. He, Y.-L. Lo, and J.-F. Huang, “Optical-fiber surface-plasmon-resonance sensor employing long-period fiber gratings in multiplexing,” J. Opt. Soc. Am. B 23, 801–811 (2006). [CrossRef]
  13. R. Falate, O. Frazão, G. Rego, J. L. Fabris, and J. L. Santos, “Refractometric sensor based on a phase-shifted long-period fiber grating,” Appl. Opt. 45, 5066–5072 (2006). [CrossRef]
  14. Y.-P. Wang, D. N. Wang, W. Jin, Y.-J. Rao, and G.-D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89, 151105 (2006). [CrossRef]
  15. G. Nemova and R. Kashyap, “Fiber-Bragg-grating-assisted surface plasmon–polariton sensor,” Opt. Lett. 31, 2118–2120(2006). [CrossRef]
  16. Y. Y. Shevchenko and J. Albert, “Plasmon resonances in gold-coated tilted fiber Bragg gratings,” Opt. Lett. 32, 211–213 (2007). [CrossRef]
  17. N. Chen, B. Yun, and Y. Cui, “Cladding mode resonances of etch-eroded fiber Bragg grating for ambient refractive index sensing,” Appl. Phys. Lett. 88, 133902 (2006). [CrossRef]
  18. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000). [CrossRef]
  19. X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90, 233501 (2007). [CrossRef]
  20. G. Vienne, Li Yuhang, L. Tong, and P. Grelu, “Observation of a nonlinear microfiber resonator,” Opt. Lett. 33, 1500–1502 (2008). [CrossRef]
  21. C. Bariáin, I. R. Matías, F. J. Arregui, and M. López-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sens. Actuators B Chem. 69, 127–131 (2000). [CrossRef]
  22. F. J. Arregui, I. R. Matías, and M. López-Amo, “Optical fiber strain gauge based on a tapered single-mode fiber,” Sens. Actuators A Phys. 79, 90–96 (2000). [CrossRef]
  23. Y. Li, X. Wang, and X. Bao, “Sensitive acoustic vibration sensor using single-mode fiber tapers,” Appl. Opt. 50, 1873–1878 (2011). [CrossRef]
  24. T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992). [CrossRef]
  25. X. Wang, W. Li, L. Chen, and X. Bao, “Distributed mode coupling measurement along tapered single-mode fibers with optical frequency-domain reflectometry,” J. Lightwave Technol. 30, 1499–1508 (2012). [CrossRef]
  26. J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. Part I: adiabaticity criteria,” IEE Proc. J. Optoelectron. 138, 343–354 (1991).
  27. H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach–Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express 15, 5711–5720 (2007). [CrossRef]
  28. J. Sakai and T. Kimura, “Design of a miniature lens for semiconductor laser to single-mode fiber coupling,” IEEE J. Quantum Electron. 16, 1059–1067 (1980). [CrossRef]
  29. D. R. Lide, ed., Handbook of Chemistry and Physics, 87th ed. (CRC Press, 2007).
  30. K. Tiefenthaler and W. Lukosz, “Sensitivity of grating couplers as integrated-optical chemical sensors,” J. Opt. Soc. Am. B 6, 209–220 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited